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1 Introduction 

The System of Environmental-Economic Accounting (SEEA) is an internationally agreed framework in-

tegrating economic and environmental data to provide a comprehensive and multipurpose view of the 

interrelationships between the economy and the environment and the stocks and changes in stocks of 

environmental assets, as they bring benefits to humanity. It brings together economic and environmental 

information in an internationally agreed set of standard concepts, definitions, classifications, accounting 

rules and tables to produce internationally comparable statistics (UN 2021).  

The SEEA consists of two parts: the SEEA Central Framework (SEEA CF), which looks at “environmen-

tal assets”, such as water and energy resources, forests, raw materials, etc., their use in the economy and 

returns back to the environment in the form of waste, air and water emissions. One example account of 

the SEEA CF is material flow accounts, which provide information on material inputs and outputs of an 

economy,  an important resource to those wanting a macro, economy-wide look at the physical inputs into 

an economy, material accumulation in the economy and outputs to other economies. The second part of 

SEEA consists of Experimental Ecosystem Accounting (SEEA EEA), which differs from the somewhat 

similar sounding environmental accounts in the SEEA CF by taking the perspective of ecosystems and 

the flow of ecosystem services to society, instead of looking only at natural resources. Ecosystem accounts 

enable the presentation of indicators of the level and value of “ecosystem services” in a given ecosystem 

accounting area (UN 2021). The SEEA EEA framework has gone through major revision and global 

consultation in 2020 and a draft version of the revised SEEA EA (Ecosystem Accounting without ‘Ex-

perimental’) guidelines was published (UNSD 2020). 

Finnish Environment Institute (SYKE) and Natural Resources Institute Finland (Luke), the partners of the 

ENVECO consortium, are national statistical organizations which report to Statistics Finland for provi-

sioning of various material, environmental and ecosystem accounts in Finland. The ENVECO project, co-

financed by Eurostat action grants for Environmental accounts and Ecosystem accounting, was led by 

Finnish Environment Institute (SYKE) in partnership with Natural Resources Institute Finland (Luke) 

between January 2020 and January 2021.The first aim of the project was to develop novel remote sensing, 

machine learning and spatial analysis methods for accounting of forest-related ecosystems in the SEEA-

EEA framework. As a result, usefulness and quality of source data for forest ecosystem service and eco-

system condition accounting was improved and some data gaps were filled by testing and development 

of forest variables and indicators. Another task related to forest accounts was to provide the value of 

forests by using monetary asset accounts. The value for timber production was calculated by using three 

approaches. The value of carbon sequestration was expressed as net present value for different prices of 

carbon.    

The second aim of ENVECO was to address the data gap in existing material flow accounts which do not 

separate primary and secondary raw materials. Such distinction is essential to provide information on the 

volumes of the material recovery and recycling in the circular economy. As a result, the project contrib-

uted to the monitoring of the transition towards a circular economy in Finland, benefitting Statistics Fin-

land in compilation of material flow accounts, decision makers and policy planners in the country, sec-

ondary material producing enterprises and the great public by quantifying and making the secondary 

material flows visible.   



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 8 / 73 
 

2 Circular economy (WP2) 

Johansson Annika, Virkkunen Henri, Savolainen Hannu, Karppinen Tiina, Salminen Jani 

 

Finnish Environment Institute (SYKE) 

 

The work conducted in Work Package 2 (WP2) contributes directly to the monitoring of the transition 

towards a Circular Economy (CE) in the European Union. Material flow analyses were performed for a 

set of 14 materials, with the goal of identifying and quantifying material flows directed towards secondary 

material production. In addition, data gaps and inaccuracies were observed and highlighted. Based on the 

work, supply and use tables for the fourteen waste materials were created. This was done in a highly 

disaggregated manner which made it possible to observe the contribution of each specific industry to the 

material flow in addition to a broad economy-wide view. In addition, the tables are fully compatible with 

existing national material flow accounts.  

The stated specific objectives in WP2 were:  

 

• To address the gap in existing material flow accounts, that do not separate the primary and secondary 

raw materials. Such distinction is essential to provide information on the volumes of the material re-

covery and recycling in the CE. To measure the achievements related to this objective, the number of 

individual materials for which material flow accounts were generated were used as an indicator.  

• To assess the availability, representativeness and quality of data for the secondary material accounts 

material by material. This way, the data gaps and future development areas could be recognized.  

• To study the contribution of different industries to the processing and generation of secondary raw 

materials. For this objective, the level of sector disaggregation was provided as an indicator.  

2.1  Background 

Economy-wide material flow accounts (EW-MFA) practically exclude waste or secondary material flows 

(Eurostat, 2018). The focus of EW-MFA is to measure the material inputs into and material outputs of the 

economy, excluding material flows within the economy. Waste flows are measured only under two cate-

gories: waste traded for final treatment and disposal (physical imports and exports) and waste disposal 

(domestic processed output). This gives rise to develop measuring and accounting for material flows 

within economy, i.e., secondary and recycled material flows. 

Recycling and recovery of materials is essential part of sustainable Circular Economy (CE). The key idea 

of CE is reducing the consumption of primary raw materials and promoting the reuse and recycling of 

materials already in circulation (secondary materials). In a CE system, waste disposal such as landfilling 

or incineration is considered a last-ditch measure that is only utilized if prevention of waste production, 

re-use or recycling is not feasible. The aim is to conserve/preserve the reserves of renewable and non-

renewable natural resources, and to restrict the environmental impacts resulting from their uptake and use.    

In order to facilitate the transition from a linear to a circular economy, the revised EU Waste Framework 

Directive (2008/98/EC) and its amendment (2018/851) set ambitious waste recycling targets. Regarding 

packaging waste, these include recycling targets of 85% for paper and cardboard, 80% for ferrous metals, 

60% for aluminum, 75% for glass, 55% for plastics and 30% for wood. These goals are to be achieved by 

2030–2035. For household waste, a minimum recycling goal of at least 55% by weight is set to be 

achieved by 2025. This goal becomes progressively more ambitious, increasing to 60% by 2030 and 65% 
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by 2035. The recycling target/rate goal for construction waste is 70%. Additionally, the new Waste Frame-

work Directive also requires improvements in the collection of national waste data and waste accounts.  

In order to monitor the transition to CE, disaggregated data on the generation of waste and its subsequent 

fate and use is required on a national scale. Such a disaggregation would be particularly valuable con-

cerning waste with high volume and broad waste classes such as mixed construction and demolition waste 

(C&DW) or mixed municipal solid waste (MSW). For accounting purposes, it is necessary to be able to 

view the material flows both as a high-level overview spanning the economy but also retain the ability to 

“zoom in” to examine certain sectors of the economy. Waste accounting provides a methodological frame-

work with which this aim can be achieved. Economy-wide material flow accounts (EW-MFA) practically 

exclude waste or secondary material flows (Eurostat, 2018). The focus of EW-MFA is to measure the 

material inputs into and material outputs from the economy, omitting material flows within the economy. 

Waste flows are measured only under two categories: waste traded for final treatment and disposal (phys-

ical imports and exports) and waste disposal (domestic processed output). This gives rise to developing 

measuring and accounting for material flows within economy, i.e., secondary material flows. 

Despite the relatively high standard of waste material flow accounts currently compiled in Finland, un-

addressed shortcomings include that the role and extent of secondary material supply and use cannot 

currently be statistically assessed.  

To overcome this, we compiled and provided data for the supply and use of secondary materials. These 

were refined into secondary material accounts detailing material-specific supply and use, industry by in-

dustry. In addition, we examined potential data gaps and discrepancies that arose when the compiled data 

were compared to existing waste statistics. The outcomes of the developed method are compatible with 

current waste statistics collected and reported by Statistics Finland. 

 

2.2 Methodology in WP2 

2.2.1  Data collection 

In order to achieve the goals outlined in chapter 1 we compiled data on the supply and use of wastes used 

for secondary material production. In order to improve the reliability of the data, several data sources 

were utilized in parallel. These included the following:  

 

• Direct inquiries to ca. 70 companies, production units or organizations engaged in waste collection, 

processing and secondary material production. (Bottom-up data) 

• Producer responsibility statistics (Pirkanmaa Centre for Economic Development, Transport and the 

Environment). (Top-down data) 

• Data bank on the material composition of mixed municipal solid waste (hereafter referred to as 

mixed MSW), compiled by Suomen Kiertovoima KIVO ry, an umbrella organization for public 

waste management, treatment and disposal enterprises. (Bottom-up data) 

• Sales data per enterprise, obtained via public database by Suomen Asiakastieto Oy. (Bottom-up data) 

• Data on waste generation and handling reported in the VAHTI/YLVA compliance monitoring sys-

tem managed by SYKE. Hereafter referred to as VAHTI/YLVA. (Bottom-up data)   

• Amounts of imported and exported waste were obtained from the Finnish Customs Database. (Top-

down data) 
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• Data on waste produced in building disassembly (construction and demolition waste, hereafter re-

ferred to as C&DW) were gathered from Building and Dwelling Register (BDR), maintained by Dig-

ital and Population Data Services Agency. (Bottom-up data) 

• The above data was combined with on-site survey data on the material composition of demolished 

buildings provided by Ytekki Oy in order to calculate waste generation coefficients for different 

building types by construction material. (Bottom-up data)    

• Data on material flows concerning fertilizer production were obtained from the Finnish Food Safety 

Authority. (Bottom-up data)   

• Regarding slag from waste incineration, data previously collected by Statistics Finland from waste 

incineration companies were utilized. (Bottom-up data) 

• Data on the use of sand, gravel, clay and crushed stone obtained from Confederation of Finnish Con-

struction Industries RT. (Top-down data) 

• Waste statistics collected and published by Official Statistics Finland.  

• Data on MSW was obtained from “Municipal waste by treatment method in 1997 to 2017” (Official 

Statistics Finland). (Top-down data) 

The data collection covered the chain extending from waste generation through waste collection and treat-

ment to the production of secondary materials. Collection was conducted in a bottom-up, industry and 

material-specific manner, which could be additionally aggregated to describe the entire Finnish economy. 

Additional top-down data were also collected to allow comparisons between the supply and use tables. 

Industry subdivision is based a 26-category scheme utilized in the environmentally-extended input-output 

model ENVIMAT developed and managed by SYKE (Seppälä et al., 2011). This scheme was modified 

by adding Demolition of Buildings as a separate industry. 

2.2.2 Data analysis and use 

To facilitate the collection and analysis of data, we first defined the structure of the hierarchy concerning 

waste and secondary materials. The system included the following steps (Figure 1): 

 

• Generation of waste by industry or source (primary waste)  

• Waste leaving the economy as export or entering as import 

• Waste collection and pretreatment 

• Waste received and processed in secondary material production and reject thereof  

• End-products: manufactured secondary materials supplied to the market 

 

Existing data on wastes used in the production of secondary materials were collected and combined in 

order to create the accounts on the secondary material flows within the Finnish economy. The compiled 

industry-specific data could be used to examine how different industries contribute to waste generation 

and secondary material production. By observing data gaps and mismatches in the compiled data, sources 

of error and areas for further development were detected.  

The data gathered from other sources were compared with the reported waste data in VAHTI/YLVA in 

order to further assess the reliability and robustness of the gathered data and to identify data gaps. 

Supplementary data was utilized in order to better assess the contribution of certain sectors of the economy 

that the compliance system does not address sufficiently. These include sectors such as mixed C&DW, 

waste export/import and municipal solid waste (MSW).  

The generation of MSW is not reported directly. Data on the treatment of MSW is retrieved from the 

national waste statistics and complemented with external data sources, for example for the material 
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consistency of the mixed MSW (KIVO) and disaggregation between MSW from households and admin-

istration, service & business sector (Salmenperä et al. 2016). 

VAHTI/YLVA contains information on the country of origin regarding treated waste. Likewise, similar 

information is provided on where the intended recipients for generated waste are located. However, since 

it contains only those operators with Regional State Administrative Agency permits and lacks all others, 

VAHTI/YLVA does not possess information on all shipments entering or leaving the country. For this 

reason, customs statistics were considered more comprehensive.    

Like MSW, demolition data is indirectly reported in VAHTI/YLVA and reported in an aggregate with 

other waste from construction. For this reason, building demolition and renovation data from BRD and 

Ytekki Oy were utilized to assess this industry more specifically.    

 

 

Figure 1: The studied steps of the waste-to-secondary material -cycle. 

For this work package, a suite of 16 types of waste materials were analyzed.  

• Glass 

• Plastic 

• Wood  

• Iron and steel 

• Aluminum 

• Copper 

• Paper 

• Cardboard 

• Concrete 

• Bricks of clay 

• Rubber 

• Sand, gravel, clay and crushed stone 

• Fertilizers 

• Mineral fractions from slag  

• Asphalt 

• Sludge from municipal wastewater treatment 
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Each of these materials were found in different waste streams, such as industrial waste, C&DW and MSW.  

A data gap here lies in the fact that some categories (e.g. mixed MSW, mixed packaging materials and 

mixed C&DW) may in practice consist of several types of materials, the true compositions being unknown 

and cannot be thus included in the calculation without uncertainty. Research and databases were used to 

estimate the material consistencies of these mixed streams. 

As explained above, for each stage of the waste-to-secondary material -cycle different and independent 

data sources were used. Thus, for each of these steps, independent figures on the volumes were generated. 

In principle, supply and use should always be equal. For instance, supply of specific waste to secondary 

material production should be equivalent to the use of that waste by secondary material manufacturers. In 

this report, however, we present unbalanced supply and use tables and discuss the reasons and methodo-

logical limitations related and contributing to this in the Discussion and conclusions section.       

2.3 Material-specific summary accounts and findings on data availability 

and data gaps 

 

In the following, we present summary supply and use accounts, findings on data availability and data gaps 

for each secondary material in separate sub-chapters. These results are also summarized in a separate 

document “Material flow accounts for individual secondary raw materials” which was a separate deliver-

able (D2.1) of work package 2. This deliverable also includes indicators describing data quality of each 

figure in the tables.  

2.3.1 Concrete and bricks from clay 

 

 

Figure 2: Data sources regarding concrete and bricks from clay in blue notes and orange notes indicating biggest 
data gaps/missing data. In parenthesis the number of companies from which information was obtained. 

More data were available from the latter than the earlier phases of the concrete and brick waste-to-sec-

ondary material -cycle. Regarding primary waste generation, data on generated concrete and brick waste 

were collected via direct inquiries from demolition enterprises and manufacturing, construction and recy-

cling companies (Figure 2). Additional data on concrete and brick waste resulting from demolition of 

buildings were produced by combining figures on demolished buildings in 2015 and 2018 as reported in 

the register of buildings and dwellings (BDR) with an on-line monitoring dataset on materials generated 

from demolished buildings of different use types and characteristics (e.g. main construction materials).  
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Uncertainties in the primary waste generation data related to the missing and erratic data on the demol-

ished buildings in BDR. Most often the missing parameters were gross floor area and/or construction 

materials. Extent of the on-site monitoring data on the material composition of the demolition waste was 

limited and thus insufficient to account for all material combinations present in the BDR data. The on-

site data accounted for material combinations of wood and concrete structures, with other material cate-

gories (steel, unknown, other) being absent from the data. Classes such as “Unknown” and “Other” are 

prevalent in BDR data and cannot be used to provide material-specific assessments. Generation of more 

comprehensive data sets on the actual material composition of demolished buildings would improve the 

accuracy of these estimates. 

Besides this, another potential source of uncertainty regarding waste generation was the relatively high 

amount of buildings (typically small private storages, garages, detached saunas and other miscellaneous 

buildings) with unknown construction materials and/or unreported gross floor areas. Even if waste 

amounts from an individual building such as these may be small, their prevalence in the data means their 

combined contribution to waste generation may be significant. Furthermore, there were also uncertainty 

concerning the amount of brick and concrete present in mixed C&DW. Due to the limited number of 

responses to the company surveys and the lack of survey data, the assessment could not be performed 

with sufficient reliability. To conclude, first, our primary waste generation data underestimate the actual 

volume of concrete and brick waste volumes. Second, more research data is needed to generate more 

reliable accounts with better coverage for the generation of concrete and brick waste. 

Major data gaps were evident regarding the supply-side of brick and concrete waste, with practically no 

direct data available on primary waste generation. Based on indirect, BDR-derived building demolition 

data, we estimated that circa 496 750 tons of concrete waste and 55 195 tons of brick waste were generated 

in demolition in 2015. In 2018, 614 540 tons of concrete waste and 68 282 tons of brick waste were 

generated, respectively. Based on the information provided in VAHTI/YLVA, construction and demoli-

tion were the highest (in year 2015) and third-highest contributing (in year 2018) industry to the genera-

tion of concrete and brick waste. In the latter case, highest and second highest contributors were “Waste 

treatment and disposal” and “Manufacture of articles of concrete, cement and plaster”, respectively. This 

indicates that despite the lack of other data, the supplementary information could be utilized in its place 

to reduce the extent of the data gap on primary waste generation.    

Regarding waste collection, processing and supply to secondary material production from construction, 

concrete and brick waste is either transported to off-site processing or some of it gets treated directly at 

the construction site. The permanent facilities processing concrete waste receive concrete waste not only 

from demolition but also from the manufacturing of products of concrete and ready-mixed concrete. In 

both cases, the concrete waste is mainly recovered by using the crushed material in earth works (Nylén 

and Salminen 2019). The data on the amount of crushed concreted i.e. the amount of produced secondary 

material, were obtained from individual enterprises and calculated by using the company’s own estimate 

of their market shares. The data cover both on-site and off-site processing and cover in total roughly 25% 

in 2015 and 53% in 2018 of the market as based on the summed-up market share estimates made by the 

companies. The responses to the business surveys were satisfactory and the total volumes estimated from 

company-specific data showed only moderate variance (1 605 911 – 1 777 615 t/a). However, a higher 

response rate would have improved the coverage and reliability of the data.  

Finnish national legislation1 permits concrete and brick waste to be used in earth works by using a regis-

tration protocol replacing the need for an environmental permit (Nylén and Salminen 2019). These vol-

umes of recovered concrete and brick waste must be reported to the state authority case by case. However, 

the data were not readily available as the electronic system for the reporting the recovered volumes was 

 
1 Regulation on the utilization of certain wastes in earth construction (843/2017), repealing regulation 

(591/2006) 
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introduced in 2020. In Pirkanmaa, Pohjois-Pohjanmaa, Uusimaa and Varsinais-Suomi regions, which to-

gether cover roughly 55% of the country’s population, in total 2,0 million tons of concrete waste was 

recovered by using the above protocol in 2018. These figures cover crushed concrete from both on-site 

and permanent (off-site) treatment facilities. They, however, cannot be used as such to calculate the na-

tional figures as Pirkanmaa, Pohjois-Pohjanmaa, Uusimaa and Varsinais-Suomi regions have much higher 

construction activity in comparison with the average of the rest of the country. Also, some of the registered 

cases may have not been realized and the volumes actually recovered may be differ (usually by being 

lower) from that given in the registration form. That said, the figures may overestimate the total annual 

volume of concrete waste recovered. From 2020 onwards, data availability on the recovery of the wastes 

belonging to the scope of the governments decree (including crushed concrete and bricks) for earth works 

will enable more comprehensive accounting on these materials in Finland. Accessing the data on the 

amount of waste treated on-site proved most challenging within this domain as data were not systemati-

cally summarized by companies. However, data availability was somewhat better for 2018 allowing an 

estimation based on data obtained from a company and scaled to cover the industry by using revenue 

information. For 2015 such estimate could not be generated as data for that year were completely missing.  

To account for reject from secondary material manufacturing, the amount of non-recyclable concrete and 

brick waste deposited to landfill were obtained from VAHTI/YLVA. There were no data readily available 

to estimate the amount of waste rejected at other stages of the waste-to-secondary material cycle. How-

ever, these wastes can in principal only be deposited to landfills that have the obligation to report to 

VAHTI/YLVA. Hence, the data coverage should be good. 

Concrete and brick waste in VAHTI/YLVA were sometimes reported together as an aggregate class. The 

proportion of mixture wastes varied greatly between years. In terms of tonnage, less than 5% of all gen-

erated concrete and brick waste in VAHTI (2015) were mixtures, while in YLVA (2018) the correspond-

ing percentage was significantly higher at 26%. These classes were, however, still utilized relatively often: 

19% of all encountered concrete waste classifications were mixtures in 2015, and 30% in 2018. There 

were very few instances of other waste reported erroneously as concrete and bricks, which means that at 

a basic level the data can be considered reliable. However, concrete, bricks and their mixtures are currently 

reported as a summed aggregate class in the system. For an accurate material flow account, these needed 

to be manually reclassified in order to separate the three material flow components, which was difficult 

and labor-intensive.  

For future development, reporting material flows of concrete, bricks and mixtures as separate entities 

instead of an aggregate class or the use of machine learning or other methods to distinguish between the 

different materials in data systems would make it less work-intensive and more accurate to compile econ-

omy-wide waste statistics. Due to the nature of demolition practice, it may not be possible to keep the 

materials separate and thus further research on the most common brick-to-concrete ratios in the mix could 

improve the accuracy of data used in waste statistics. 

Based on information received from companies, they were present in their mixtures in proportions 90% 

and 10%, respectively. This was further validated with information from VAHTI/YLVA, based on which 

10% was used as the share of brick in the waste mixtures from demolition and 6% from other construction 

work. Aggregate classes are prevalent in the data as they are sufficient for VAHTI/YLVA’s original role 

in environmental permit compliance monitoring. However, for accounting purposes they present a source 

of inaccuracy.  
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Table 1: Merged summary use and supply table for concrete and brick waste in 2015 and 2018 in Finland. 

Material  Use in secondary ma-
terial manufacturing*  

Reject from secondary material manufactur-
ing, t  

Supply of 
secondary 
material, t  

Concrete (2015) 1 633 524 23 274 1 708 431  

Concrete (2018) 1 421 774  80 146  1 652 842  

Bricks from clay (2015) 104 268 1 795  109 049 

Bricks from clay (2018) 157 974 2 178 183 649  

* Use in secondary material manufacturing includes waste received for industrial manufacturing of secondary materials and waste 

treated directly at demolition sites (on-site treatment).  

Regarding material flows in export and import phases of waste hierarchy, concrete and brick waste were 

neither exported to nor imported from or to Finland in 2015 or 2018 and imports and exports are therefore 

omitted from Table 1. In addition, concrete or bricks were not supplied to waste-to-energy plants as these 

are not suitable for that purpose. The amount of reject includes the amount of contaminated concrete and 

brick waste obtained from VAHTI/YLVA.   

Regarding waste received for secondary material manufacturing (i) and produced secondary material 

(end-product) (ii), the amounts of (i) concrete and brick waste supplied to secondary material manufac-

turing and (ii) secondary materials produced were higher when calculated on the basis of company inquir-

ies. These figures were also considered more accurate than those derived from VAHTI/YLVA. The rea-

sons for this relate to – as mentioned above – the absence of companies treating concrete and brick on-

site are not reporting earth works in the system. The amount of brick waste was higher in 2018 as the 

company data in 2015 were mainly obtained from permanent treatment facilities and thus 6% instead of 

10% was used for the ratio of brick waste. The difference between raw materials for secondary material 

manufacturing and end products produced were due to changes in storage.  
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2.3.2 Paper and cardboard 

 

Figure 3: Data sources regarding paper and cardboard in blue notes and orange notes indicating biggest data 

gaps/missing data. In parenthesis the number of companies from which information was obtained. 

Comprehensive data on paper and cardboard waste streams were obtained, especially towards the last 

phase of the material cycle, as recycling companies responded comprehensively to the inquiries and the 

response rates were high (Figure 3). Companies were well aware of the amounts of waste volumes they 

received, as well as of the rejects and the amounts of recycled materials produced. Data on the volumes 

of waste received and secondary materials produced were additionally obtained from two industry organ-

izations involved e.g. in arranging the producer responsibility and the figures corresponded to the data 

obtained from VAHTI/YLVA and reported by the individual companies.  

Data gaps were mainly identified in the assessment of the amount of primary waste generated and on 

reject from generation and collection stages of the waste-to-secondary material -cycle. For example, data 

on generated municipal waste were not available because waste producers (residents, majority of compa-

nies, public sector, etc.) do not report waste volumes in the VAHTI/YLVA database, and therefore the 

assessment was based on data from waste reception facilities and waste statistics. Also, data on the pack-

aging material flow resulting from online retail entering the market were unavailable. For future develop-

ment concerning the generation of packaging waste, the volumes of packaging material provided for 

online retail trade could possibly be obtained from packaging material wholesale enterprises. A supple-

mentary source of information could be the largest postal and courier services responsible for transporting 

the product for end use. However, this would not consider the retail packaging of the product itself, only 

the packaging used for transport. 

Separately collected paper and cardboard waste generated during construction is included in the producer 

responsibility data, which concerns plain paper and paper and cardboard packaging separately. Paper 

and cardboard in the mixed MSW fractions and C&DW were expected to end up in incineration (although 

before 2016, mixed waste also ended up in landfills) and as such was allocated in the column ‘energy 

production’ in Figure 3. Their shares were calculated based on national estimates on MSW composition. 

The amount of paper and cardboard waste generation in litter and in use in e.g. small-scale household 

combustion were impossible to determine, because there were no data available to identify the latter, and 

although information was available on the amount of street sweeping waste from the companies carrying 
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out the activities, its composition remained unknown. However, the contribution of these flows to the 

overall flow of paper and cardboard in the Finnish economy is likely small.  

Regarding import and export of waste (Table 2 and Table 3), the data for exported waste were obtained 

from customs statistics. As the exported amount of paper and cardboard waste were reported together, the 

total amounts of each component were estimated based on the paper/cardboard-ratios obtained from the 

producer organization statistics (59% Paper and 41% cardboard in 2015, 50% paper and 50% cardboard 

in 2018, respectively). The data for exported waste were in line with the data from VAHTI/YLVA for 

2015. The data for imported waste were obtained from companies and were in line with the customs 

statistics for both years in question. Data gaps in this phase of the waste-to-secondary material -cycle are 

that small waste shipments inside EU do not require a customs declaration. If shipments such as these 

also have no waste shipment permits or obligation to report waste exports in the environmental permit, 

there is no information available on such shipments. 

Data on the amount of waste received by companies for production of secondary materials (Table 3) were 

obtained from VAHTI/YLVA, the industry organization and the companies concerned. These sources of 

information were determined to be consistent with each other. Paper and cardboard were reported as an 

aggregate group in VAHTI/YLVA. This data contained large amounts of mixed waste, both in terms of 

occurrences and tonnages. In 2015, circa 36% (VAHTI) and in 2018 circa 40% (YLVA) of all generated 

paper and cardboard waste tonnages were mixtures. In both data sets, mixture-type classifications were 

common, accounting for 29% of all encountered classifications in 2015 and 26% in 2018. Because of this, 

a manual recoding was necessary to enable disaggregation similarly to the case of concrete and brick 

waste.  

A higher-resolution classification, in which paper, cardboard and mixtures are separately reported, would 

enable higher accuracy of the waste and secondary material accounts. However, it would be challenging 

to implement as for instance paper and cardboard packaging waste is collected from households in mixed 

form. The issue of aggregated data was not present in the data obtained by direct inquiries, since the 

enterprises mostly dealt with either paper or cardboard and only rarely both. As such, the inquiry data 

collected did not require recoding. 

Concerning cardboard waste use for secondary material production in 2018, data were comprehensively 

obtained from companies using cardboard waste and with almost similar coverage regarding paper waste 

utilizing facilities in 2018 and 2015. The company inquiries did not provide as comprehensive data re-

garding cardboard waste in 2015 and as such the accuracy of the 2018 data could be verified more reliably 

than data for 2015. Regarding cardboard waste in 2015, data were obtained from VAHTI/YLVA and 

compared to data from industry organization together with company data, because data were not available 

from many companies due to changes in company’s data storage methods. 

Regarding reject from paper and cardboard secondary material manufacturing, the following estimates 

based on direct company inquiries were utilized. In 2015 and 2018, paper waste contained 1-31% of reject. 

Based on this 20% was used as the share of reject for data obtained from VAHTI/YLVA in 2015 and 

2018. On the basis of company responses concerning year 2018, 10% was used as the share of reject from 

cardboard waste in 2015 and 2018. The data on the production volume of secondary materials from paper 

and cardboard waste in 2015 were equal to data from national statistics. The reject consists misclassified 

waste materials such as plastic or metals for example, i.e. newspaper staples. The rest of the waste was 

utilized in the production of secondary materials, for example in newsprint, case materials, household and 

sanitary paper. 

A higher-resolution classification, in which paper, cardboard and mixtures are separately reported, would 

enable higher accuracy in creating waste accounts. However, it would be challenging to implement as for 

instance paper and cardboard packaging waste is collected from households in mixed form. The issue of 

aggregated data was not present in the data obtained by direct inquiries, since the enterprises mostly dealt 
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with either paper or cardboard and only rarely both. As such, the data collected in the inquiries did not 

require recoding. 

 
Table 2: Merged summary supply table for paper and cardboard waste in 2015 and 2018 in Finland. 

Material Domestic supply, t*  Import, t  

Paper (2015) 367 187  37 130  

Paper (2018) 277 803  82 586  

Cardboard (2015) 265 121 23 346  

Cardboard (2018) 273 833  25 500  

   * Collected paper and cardboard waste 

Table 3: Supply of paper and cardboard waste to energy production and use of paper and cardboard in waste sec-
ondary material manufacturing, reject in secondary material manufacturing and the supply of secondary paper and 
cardboard in 2015 and 2018 in Finland. 

Material  Export, t  Energy produc-
tion, t  

Waste received 
to secondary 

material manu-
facturing, t  

Reject in sec-
ondary material 
manufacturing, t  

Produced sec-
ondary material, 

t   

Paper (2015) 54 392   89 964 312 075  69 527 242 548 

Paper (2018) 34 335  89 392  313 717  69 685 244 033 

Cardboard (2015) 37 798 116 597  269 786  26 979 242 807 

Cardboard (2018) 34 335  132 767  322 511  64 703 257 819 

 

2.3.3 Plastics 

 

Figure 4: Data sources regarding plastic in blue notes and orange notes indicating biggest data gaps/missing data. 

In parenthesis the number of companies from which information was obtained. 

The separate collection of plastic packaging waste from households in Finland is a relatively new practice 

that has only started properly after 2016. Prior to this, majority of plastic packaging has ended up in the 

mixed MSW. Plastic waste therefore ends up in secondary material production in relatively small 
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quantities. Significant amounts of plastic packaging, as well as other municipal plastic waste, still ends 

up in MSW fractions which are generally incinerated (and additionally, before 2016 were also landfilled).  

As a result, there were gaps evident in the data concerning various stages of the waste hierarchy (Figure 

4).  More comprehensive data collection could enhance the efficiency of plastic recycling and help direct 

higher material volumes towards secondary material cycle.  

The amount of generated plastic waste could not be estimated with confidence due to existing severe gaps 

in data availability, and therefore, the assessment was based on data from waste reception facilities and 

describes the waste collection stage of the material cycle.  

The problem stems from missing pieces of data on several waste flows. For example, data on generated 

plastic waste included in MSW were not available, because waste producers (e.g. households and majority 

of private companies and public sector organizations) do not report their waste volumes into the 

VAHTI/YLVA database.  

It was also impossible to determine the amount of generated plastic waste in litter because, for example, 

the composition of sweeping and roadside waste is unknown. Quantitative data on littering were collected 

from individual companies, but an inventory of the amount and composition of littering is needed in order 

to be able to take this material flow into account. However, the new reporting requirements from the EU 

directive on single-use plastics (2019/904/EU), leads to increased monitoring of gardening, sweeping and 

roadside waste. 

Another data gap in plastic waste generation concerns the generation of plastic waste from agriculture. 

About 12 000 tons of agricultural plastic waste is generated per year, part of which is in producer respon-

sibility statistics. It has been estimated that about one-fifth goes to recycling and the rest is used for energy. 

(Alenius 2016) In 2015-2019 there were no functioning system for the recycling of agricultural plastic 

waste, and recycling was largely based on the actions of individual farmers and horticultural enterprises 

(Erälinna & Järvenpää 2019).  

Some data gaps were still evident concerning waste collection, even though producer responsibility sta-

tistics do provide rather comprehensive data on plastic packaging waste collected in Finland. Data were 

missing for instance, from companies with a less than one-million-euro turnover and data on the packag-

ing material flow resulting from online retail entering the market. As with paper and cardboard, packaging 

wholesale enterprises and postal & courier services could in future provide sources of information for 

accessing this material flow. However, this approach would only consider the packaging used in trans-

porting the product after sale, while the retail packaging of the product itself would remain unknown. Due 

to the immense variety of possible retail packaging compositions and scattered distribution of suppliers, 

it is likely that this material flow will remain unelucidated for the foreseeable future.   

Plastic waste has been estimated to be the second largest material fraction of mixed household solid waste 

(second to biowaste) (KIVO) and a large fraction of mixed C&DW, together with wood, crushed stone 

and other miscellaneous waste (Liikanen et al. 2018). The assessment of the composition of mixed waste 

was based on national waste statistics, household waste composition database (KIVO), reports and com-

pany surveys and more research are needed to enable even more accurate assessment of its composition. 

Also, an increased efficiency in MSW and C&DW sorting may provide a method with which to redirect 

more of this waste flow to the secondary material cycle. Where information on the composition of house-

hold waste was available, information on the composition of mixed MSW from other sources, such as 

administration, services and businesses, most likely varies greatly and is currently largely unknown.      

The import and export data were obtained from the customs statistics. Uncertainty regarding these data 

relates to unregistered small waste shipments inside EU, that do not require a customs declaration, a waste 

shipment permit or have the obligation to report waste exports in the environmental permit. The new 

amendments to the Basel Convention regarding plastic waste came into force in early 2021 and will 
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improve this, as more waste shipments will be subject to a permit. More comprehensive statistics on 

plastic waste imports and exports will improve the reliability of these waste statistics. 

 
Table 4: Merged summary supply table for plastic waste in 2015 and 2018 in Finland. 

Material Domestic supply, t* Import, t 

Plastic (2015) 41 791 1 317 

Plastic (2018) 42 008 3 859 

 *Collected plastic waste, based on Producer responsibility statistics 

Domestic supply of separately collected plastics waste (Table 4) was estimated at 41 791 tons and 42 008 

tons, for 2015 and 2018 respectively. Of these, the amount of imported waste were 1 317 and 3 859 tons, 

respectively (3% and 8,4%). Domestic supply refers to Statistics Finland’s data regarding separately col-

lected municipal plastic waste. The data lacks other plastic waste collected separately from, for example, 

agriculture and construction, which could also end up being recycled. Plastic waste among mixed waste 

is assumed to end up in incineration, i.e. energy production, even thou in 2015 some of it might have also 

ended up in landfill. The data below regarding plastic used in energy production, refers to the estimated 

amount of plastic among the mixed MSW and mixed C&DW. This data lacks, for example, the incinera-

tion of plastic waste from agriculture and separately collected plastics.  

 

Table 5: Supply of plastic waste to energy production and to secondary material manufacturing, reject in secondary 

material manufacturing and the supply of secondary plastics in 2015 and 2018 in Finland. 

Material Export, t Energy production, 
t 

Raw materials 
for secondary 
material man-
ufacturing, t* 

Reject in sec-
ondary mate-
rial manufac-
turing, t 

Produced 
secondary 
material, t 

Plastic (2015) 31 277 270 816 15 304 1 189 14 268 
Plastic (2018) 21 542 291 980 33 997 6 753 24 541 

  *waste received for industrial manufacturing of secondary materials 

As the recovery percentages of plastic waste remain relatively small, this were also reflected in the rela-

tively small absolute tonnages of secondary plastic materials manufactured (Table 5). Recycling rate in 

2018 was almost twice that of 2015, which reflects the more efficient collection of separately collected 

plastic packaging from households since 2016. The recycled amount of plastic waste in 2015 corresponds 

to the data provided by the producer responsibility organization, while in 2018 the organization’s data 

covered only about half of the estimated amount. Producer responsibility statistics give double and three 

times the amount of recycled materials, in 2015 and 2018 respectively. The detailed data from companies 

manufacturing secondary plastics (granulates or flakes) are expected to give a more reliable estimate of 

the actual amount of recycled material. The figures regarding raw materials for secondary material man-

ufacturing, reject and produced secondary material are based on data collected from identified six major 

companies producing secondary materials from plastic waste. However, there are approximately 530 com-

panies manufacturing plastic products in Finland according to the Finnish Patent and Registration office 

(PRH) and if some of these companies were utilizing plastic waste in their products in 2015 and 2018, the 

figures cannot be considered comprehensive. More detailed information is needed on the amount of plas-

tic waste produced and used by companies. 

VAHTI/YLVA database categorizes plastic waste into only two categories, plastic packaging and aggre-

gated “other plastic wastes”. Currently, a more accurate plastic waste accounting considering various 

plastic types and their potentially different end-use scenarios is not possible with these tools. A more 

precise definition of the data in the database would allow it to be better utilized in waste statistics.  
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2.3.4 Metals 

 

Figure 5: Data sources regarding metals in blue notes and orange notes indicating biggest data gaps/missing data. 
In parenthesis the number of companies from which information was obtained. 

Data on the amount of received metal waste for secondary material production were considered compre-

hensive, unlike data on the beginning of the waste-to-secondary material -cycle, i.e. generation, collection 

and processing before the supply to secondary material production and reject from these activities were 

lacking some available data (Figure 5). 

The amount of metal waste generated could not be estimated with confidence due to existing severe gaps 

in data availability. Like with many waste materials, this could have been done by using data from later 

stages in the waste chain, but this project sought to find primary sources of information. Uncertainties 

regarding demolition statistics related to the absence or generalizations of recorded building properties 

and on-site monitoring covering only a limited number of building types. Generation of more comprehen-

sive data sets on the actual composition of demolished buildings would improve the accuracy of these 

estimates.  

Metal waste has been estimated to cover approx. 2% of mixed household solid waste and 4-12% of mixed 

construction and demolition waste from which 8% was used in this study (KIVO, Liikanen et al. 2018). 

The assessment of the composition of mixed waste was based on national waste statistics (Statistics Fin-

land), database on the composition of mixed MSW from households (KIVO), reports and company sur-

veys. More research is needed to enable more accurate assessment of its composition. The metal contained 

in the mixed waste is collected for recycling either before or after incineration. 

The metal waste included in producer responsibility schemes, such as batteries, WEEE (Waste electrical 

and electronic equipment), packaging and end-of-life vehicles, were estimated using producer responsi-

bility statistics for the amount of certain wastes and material estimates for cars were based on Suomen 

Autokierrätys data, WEEE on El-Kretsen AB 2019 data and batteries on Suomen Akkukierrätys 2017 

data. Information on metal packaging waste was obtained from the producer organization (Mepak-

kierrätys Oy). The uncertainty of the data results from the fact that not all municipalities and private 

companies report their data on metal waste they collect to Mepak. Small metal objects are not subject to 

producer responsibility and information on their quantities were not readily available.  



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 22 / 73 
 

Regarding waste collection, processing and supply to secondary material processing, data were obtained 

from VAHTI/YLVA (Table 6). Unfortunately, no information was available on the quantities of metal 

received, processed and forwarded by scrap dealers. Obtaining this information would have made it pos-

sible to compile comprehensive statistics on the collection of metals and particularly give data in regards 

of reject during collection and processing.  

The import and export volumes of metals were based on customs statistics. These were manually recoded 

into broader classes to separate metal types iron and steel, copper, aluminum, and mixed metals (Table 

6). The import and export volumes of metals are affected by fluctuations in the monetary value of metals 

worldwide.  

The amount of received waste for secondary material production (Table 7) was obtained from 

VAHTI/YLVA and the amount of reject from the company survey together with VAHTI/YLVA database. 

The reject consists of (i) losses in recovery processing and (ii) metals that were contaminated e.g. with 

radioactive substances.  

According to our data and the nature of the material, metal waste was not utilized in energy production. 

 
Table 6: Merged supply table for metal waste in 2015 and 2018 in Finland. 

Material Domestic supply, t Import, t 

Metals (2015) 466 613 851 546   

Metals (2018) 690 146 910 722 

* collected metal waste 

Table 7: Supply of metal waste to secondary material manufacturing, reject in secondary material manufacturing 
and the supply of secondary metals in 2015 and 2018 in Finland.. 

Material  Export, t  Domestic waste 
delivered to 

secondary ma-
terial manufac-

turing, t* 

Waste received 
to secondary 

material manu-
facturing, t** 

Reject in sec-
ondary material 
manufacturing, 

t**  

Produced sec-
ondary mate-

rial, t**  

Metals (2015) 451 812  155 688  1 366 189  
 

26 418 1 339 821 

Metals (2018) 622 536  269 262 1 471 347  24 200 1 383 763 

*Based on VAHTI/YLVA data. ** Secondary material manufacturing took place in basic metal manufacturing (NACE 241-245) 

 

Table 8: Import and export of metal waste and receival of metal waste to secondary material manufacturing in 2015 

and 2018 in Finland. 

Material Import, t  Export, t  Waste received to secondary mate-
rial production (incl. import), t  

Iron & Steel (2015) 813 728 358 207 1 295 571 

Aluminium (2015) 13 244 52 123 79 

Copper (2015) 19 878 22 807 38 267 

Mixed metals (2015) 1 373 181 32 322  

Iron & Steel (2018) 877 494 489 728 1 391 792 

Aluminium (2018) 12 803 80 139 30 

Copper (2018) 11 020 29 676 41 376 

Mixed metals (2018) 2 837 4 472 42 662  
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The amounts of iron and steel, aluminum and copper waste imported and exported were obtained from 

customs statistics and the amount of received waste for secondary material production were obtained from 

VAHTI/YLVA together with data on the reported primary industry of the enterprises (Table 8). In some 

cases, VAHTI/YLVA categorizes metallic wastes into too broad classes to be immediately useful for 

accounting purposes. Aggregated, mixed classes such as Mixed metallic packaging and Other mixed me-

tallic wastes were difficult to use, since only their total amount was readily available and manual dis-

aggregation was necessary. Additionally, metal components such as aluminum may be included with 

waste that was categorized with other waste classes. This makes it more difficult to monitor the recycling 

goals relating to these kinds of metallic waste.   

 

2.3.5 Asphalt 

 

Figure 6: Data sources regarding asphalt in blue notes and orange notes indicating biggest data gaps/missing data. 

The asphalt waste generated refers to waste asphalt that has been transported to an asphalt plant for recy-

cling. However, for the operation of asphalt plants a registration protocol is used instead of an environ-

mental permit. The registration covers the use of asphalt waste as well and therefore, the data on asphalt 

plants and the related use of asphalt waste is not present in VAHTI/YLVA. Asphalt waste that is imme-

diately remixed on site as part of repaving, that is, making a new asphalt layer, is not considered waste. 

These on-site remix amounts (roughly 1 million tons per year; Forstén 2015) are therefore not considered 

as secondary material production.  

The data on the amount of generated waste and produced secondary materials were obtained from enter-

prises and industry organization (Figure 6). The uncertainty was not related to the amount recycled but to 

whether the recycled asphalt could be considered waste before it was recycled or not. The amount in 

VAHTI/YLVA) were much lower for the reasons mentioned above and the information retrieved from 

the other sources were considered more reliable. Regarding the supply of asphalt, no imported waste was 

included in the data and all supply of asphalt waste was of domestic origin (Table 9). 

 
Table 9: Merged supply table for asphalt waste in 2015 and 2018 in Finland. 

Material Domestic supply, t  
 
Asphalt (2015) 

 
1 800 000  

Asphalt (2018) 1 900 000  
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Table 10: The use and production of secondary asphalt from asphalt waste in 2015 and 2018 in Finland. 

Material  Produced secon-
dary asphalt, t  

 
Asphalt (2015) 

 
1 650 000  

Asphalt (2018) 1 900 000  

   

For the use and production table, only the amount of final product was available, with 1.65 Mt and 1.9 Mt 

of secondary asphalt product produced in 2015 and 2017, respectively (Table 10). To our knowledge, 

asphalt is neither exported nor used in energy production. Data on the amount of asphalt waste used in 

secondary material manufacturing, or reject thereof, was unavailable.  
 

2.3.6 Rubber 

 

Figure 7: Data sources regarding rubber in blue notes and orange notes indicating biggest data gaps/missing data. 

The amount of rubber waste generated could not be reliably estimated even though rubber waste gener-

ated by manufacturing industries was retrieved from VAHTI/YLVA (Figure 7). However, data on vehicle 

tyre waste generation is not reported to this database as a majority of it is generated by households and 

companies or organizations that do not have an environmental permit. Instead, data were available at the 

stage of waste collection and processing from producer responsibility statistics, producer organization 

(Suomen Rengaskierrätys Oy) and from a company that has been solely responsible for the recycling of 

rubber waste under producer responsibility in Finland. The domestic supply (Table 11) refers to data on 

producer responsibility statistics regarding collected tyres (Pirkanmaa Center for Economic Development, 

Transport and the Environment, Producer responsibility statistics, statistics on vehicle tyres).  The import 

and export volumes of rubber for 2015 and 2018 are based on customs statistics. 

For rubber, most of the total supply was accounted for by domestic supply, with imported material re-

ceiving only small shares in 2015 and 2018, 12% and 6%, respectively.  
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Table 11: The summary supply table for rubber waste in 2015 and 2018 in Finland. 

Material Domestic supply, t*  Import, t  

Rubber (2015) 58 924  7 776 

Rubber (2018) 60 808  3 446  
* Share of collected used tyres: 55 453 t in 2015 and 57 152 t in 2018. The remaining 3 471 t (2015) and 3 656 t (2018) represent 
other rubber waste generation from manufacturing industries (VAHTI/YLVA). Of this waste,1226 t was utilized in secondary material 
manufacturing in 2015, and 1196 t in 2018.        

 

The data on raw materials for secondary material manufacturing (Table 12) were obtained from producer 

responsibility statistics on collected tyres and from producer organization on energy production. There 

were no data available to estimate the amount of reject during waste collection, processing, supply to 

secondary material production and in receiving and producing secondary materials.    

Uncertainties related to other rubber waste not covered by producer responsibility, such as rubberized 

rollers and retreading of heavy vehicles tyres and including these in the producer responsibility could be 

a solution in improving the reliability of the accounts. 

 

Table 12: Export, energy recovery, re-use, material and other recovery of rubber waste in 2015 and 2018 in Fin-
land. 

Material  Ex-
port, 

t  

Energy 
produc-
tion, t  

Re-use 
of ve-
hicle 
tyres, 

t* 

Material re-
covery, t* 

Other re-
covery, t* 

Rubber (2015) 1 841  13 571  831  34 567  6 459  

Rubber (2018) 1 676  9 443  642  57 386  2 030  

 * Contains used tyres only.   

In VAHTI/YLVA database, subclass of waste (used tyres) was the only one that is guaranteed to charac-

terize the generation of rubber waste. Rubber that may be included with other classes cannot be separated 

without manual disaggregation. Data on rubber reject from secondary material manufacturing was una-

vailable. The data suggest that the share of rubber utilized in energy production has decreased over time 

between 2015 and 2018, with more being directed to secondary material production.  

  



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 26 / 73 
 

2.3.7 Wood 

 

 

Figure 8: Data sources regarding wood in blue notes and orange notes indicating biggest data gaps/missing data. 

The amount of wood waste generated could not be estimated with confidence due to existing severe gaps 

in data availability (Figure 8). Uncertainties regarding wood waste generated during demolition of build-

ings related to the inaccuracies in the demolition statistics as well as the missing data to assess the possible 

material combinations of the demolished buildings. Generation of more comprehensive data sets on the 

actual composition of demolished buildings would improve the accuracy of these estimates.  

According to Häkämies et al. (2019) the amount of wood waste from construction and demolition was 

estimated to be approximately 250 000 t per year. Domestic supply in Table 13 combines this with the 

amount of wood packaging waste recycled as material and used for energy production according to pro-

ducer responsibility statistics as well as the amount of wood waste brought to sorting stations. The latter 

was calculated by one company’s collection rate and scaled to estimate the whole country by the ratios of 

company’s collection area and Finland’s total population. 

The amount of wood waste in mixed MSW has been estimated to be 1,5% according to the national 

average composition of household waste (KIVO). In addition to this, there is also bulky wood waste 

coming from households, the amount of which could not be estimated here due to lack of data. The amount 

of wood waste in mixed C&DW was estimated to be 17-32%, for which 25% was used in this study 

(Liikanen et al. 2018). The average annual amount of waste generated from construction was estimated 

to be approximately 1,5 million tons of which 21% was estimated to be mixed waste and 15% wood 

(Salmenperä et al. 2016). 

The data on imported and exported amount of wood waste were obtained from the Finnish Environment 

Institute SYKE’s trans-boundary waste shipment statistics (SYKE). 

 
Table 13: Merged supply table for wood waste in 2015 and 2018 in Finland. 

Material Domestic supply, t*  Import, t  

Wood (2015) 528 373  48 000  

Wood (2018) 541 092  30 000  

   * Collected wood waste 

Wood waste rarely ended up in secondary material production and most were utilized in energy produc-

tion, e.g. most of wood waste from demolition of buildings ends up in energy production (Häkämies et al. 

2019). Produced secondary material amounts in Table 14 were obtained from producer responsibility 
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statistics and include the repair of wooden pallets. Company inquiries failed to obtain additional infor-

mation on the utilization of wood waste for secondary material production, the contacted companies uti-

lizing industrial by-products rather than wood waste  
 

Table 14. The use and production of secondary materials from wood waste in 2015 and 2018 in Finland. 

Material  Export, t  Produced secondary material, t*  

Wood (2015) 
 

25 000  27 855  

Wood (2018) 40 000  52 776  

* Waste received for industrial manufacturing of secondary materials 

2.3.8 Glass 

 

 

Figure 9: Data sources regarding glass in blue notes and orange notes indicating biggest data gaps/missing data. 

Data on glass waste is based on data reported in VAHTI/YLVA, besides the import/export volumes of 

glass waste, which are based on customs statistics (Figure 9). Parallel data to VAHTI/YLVA was collected 

concerning glass waste from construction and demolition, and separately collected glass waste in MSW. 

The average annual amount of waste generated from construction was estimated to be approximately 1,5 

million tons of which 21% is mixed waste and 1% is glass (Salmenperä et al. 2016).  3-6% of mixed 

construction and demolition waste was estimated to be glass waste, from which 5% was used in this study 

(Liikanen et al. 2018). The data regarding separately collected glass waste were obtained from Statistics 

Finland. Glass sorting has been moderately efficient and very little ends up in mixed household waste. 

According to the national average composition of mixed MSW from households, approx. 2% of mixed 

MSW consists of glass (KIVO), which was concluded to end up in energy production. Based on these 

parallel estimates, the domestic supply of glass waste (representing collected waste from MSW, construc-

tion and demolition) was estimated as 115 565 tons in 2015 and 120 735 tons in 2018, respectively (Table 

15).  
 

  



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 28 / 73 
 

Table 15. The summary supply table for glass waste in 2015 and 2018 in Finland. 

Material Waste generation1 Waste collection 
and treatment2 

Import, t3 

Glass (2015) 12 103 69 371 22 

Glass (2018) 25 463 66 229 22 

1Generated glass waste reported in VAHTI/YLVA. Does not include waste pretreatment or storage. 
2Waste reported as received by Waste collection, Waste treatment and disposal, and Materials recovery industries in 
VAHTI/YLVA.  Does not include waste pretreatment or storage. 
3Customs statistics 

The amount of secondary materials produced (Table 16) were obtained from VAHTI/YLVA together 

with data regarding the recycled material from packaging waste (both domestically and abroad) from 

producer responsibility statistics.   

There were no data available to estimate the amount of reject during waste collection, processing, supply 

to secondary material production and in receiving and producing secondary materials.    

 
Table 16. The use and production of secondary materials from glass waste for years 2015 and 2018 in Finland. 

Material  Export, t  Energy produc-
tion, t 

Waste to sec-
ondary material 
production, t* 

Produced secondary material, t 

Glass (2015) 47 109 35 171  88 014  55 379  
 
Glass (2018) 

 
32 324 

 
30 438  

 
90 312  

 
73 114  

  *Waste reported in VAHTI/YLVA as received by the companies producing glass-based secondary materials operating in Finland 

Glass packaging and other glass waste provided the only categories of glass in VAHTI/YLVA database 

suitable for analysis as waste consisting of only glass.  

More efficient sorting of both MSW and C&DW waste could further improve the efficiency of recycling 

and increase the amount of produced secondary material from glass waste.   

Concerning glass, we provide a set of more accurate supply and use tables for the years 2015 and 2018, 

in which the contribution of different industries to each phase in the glass waste-to-secondary material -

cycle is demonstrated. These tables are provided in Annex I of the present document.   

  



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 29 / 73 
 

2.3.9 Mineral fractions from processed slag from waste incineration 

 

 

Figure 10: Data sources regarding mineral fractions from processed slag from waste incineration in blue notes and 
orange notes indicating biggest data gaps/missing data. In parenthesis the number of companies from which infor-

mation was obtained. 

The data on the generation of this secondary waste (i.e. waste generated from waste treatment) mineral 

fractions from processed slag from waste incineration, were obtained from incineration plants for year 

2018 (Figure 10). The 2015 data were incomplete in the absence of data from companies. Uncertainty 

about the data was related to e.g. incinerated material and whether the incinerated material was defined 

as waste. 

The data regarding the amount of slag treated by companies were obtained for both years in question 

(Table 17). The metals were either recovered from slag or before incineration. Therefore, the data col-

lected from the companies could not be considered complete and comprehensive waste statistics requires 

information from both waste generation and treatment companies.  

 
Table 17: Merged supply table for mineral fractions from processed slag waste in 2015 and 2018 in Finland. 

Material Domestic 
supply, t 

Mineral fractions from processed slag, waste incineration (2015) 198 417  

Mineral fractions from processed slag, waste incineration (2018) 285 981  

 

According to our analysis, slag was not being imported and all supplied material flow was of domestic 

origin. The volume of waste incineration slag and ash exports in 2015 were obtained from customs statis-

tics. According to the statistics there were no exports in 2018. 

In the VAHTI/YLVA database, all slag and ash from any kind of thermal processing were reported in the 

same aggregated class, causing error in the estimates and making it impossible to distinguish the amount 

of slag from waste incineration that was the subject of this project.  
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Table 18: The use and production of secondary materials from mineral fractions from processed slag from waste 
incineration in 2015 and 2018 in Finland. 

Material  Export, t  Produced secondary material, t  

Mineral fractions from processed slag, waste incineration (2015) 1 271 117 201  

Mineral fractions from processed slag, waste incineration (2018) 0 278 295  

 

For the summary use and production table (Table 18), only the amount of produced secondary materials 

were available. Based on our analysis, the amount of produced slag-based mineral fractions was circa 

117 200 tons in 2015 and 279 000 tons in 2020, with a larger data gap in the 2015 data.  The difference 

between the domestic supply and produced secondary material were caused by storage. Other categories 

are omitted due to lack of data.  

2.3.10 Fertilizers 

 

 

Figure 11: Data sources regarding fertilizers in blue notes and orange notes indicating biggest data gaps/missing 
data. 

Recycled fertilizers are divided into two main groups: ash fertilizers and organic fertilizers (including 

solid and liquid ones). Finnish Food Authority regulates the production of fertilizers and is the main data 

source for recycled fertilizers. Figure 11 combines data sources for both ash and organic fertilizers. 

Ash fertilizers consist of ash from wood and peat combustion. Data on primary waste generation includes 

all combustion wastes, but only some fraction of waste is used in fertilizer processing; most of it is un-

suitable for fertilizer use and is backfilled or landfilled. YLVA/VAHTI includes data for waste generation 

and following steps of secondary material production. Additionally, Finnish Food Authority registry con-

tains data on received ash waste for secondary material production. Most of the useful combustion waste 

is regarded directly as secondary material end-product, but ca. 20-25% of end-products are produced by 

manufactures of recycled fertilizers. Registry data of Finnish Food Authority includes detailed infor-

mation of end-product use categories (agriculture, forestry, households, landscaping and maintenance of 

green spaces, other uses, export). Also end-products not used as fertilizers are reported. 
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Organic fertilizers are produced by several types of companies, only minority of them utilizing waste 

flows. Organic fertilizers are commonly by-products of some other production (goods or services). 

Sludges, animal and mixed food wastes, and manure are used in the production of solid organic fertilizers. 

Mixed and undifferentiated materials, animal feces, urine and manure, and vegetal wastes are most im-

portant waste flows in the production of liquid organic fertilizers. Biogas and potato starch plants are most 

important producers of liquid organic fertilizers. Only small fraction of suitable primary wastes is used in 

the production of organic fertilizers. The estimation of the amount of useful wastes with confidence was 

not possible due YLVA/VAHTI data gaps.  

 
Table 19: Merged supply table for ashes from combustion of wood, peat, coal etc. in 2015 and 2018 in Finland. 

Material Domestic supply, t 

Combustion ashes (2015) 1 394 868  

Combustion ashes (2018) 1 409 327  

 

The supply of combustion waste was exclusively domestic in 2015 and 2018 (Table 19). The supply 

includes all ash and slag, most of it unsuitable for recycled fertilizers. Domestic supply for organic ferti-

lizers was not possible to estimate due to the large heterogeneity of waste flows and manufacturing pro-

cesses of solid and liquid organic fertilizers. 
 

Table 20: Use of combustion ashes as raw material for secondary fertilizer production, supply of ash, solid organic 
and liquid organic fertilizers and related volumes of reject in 2015 and 2018 in Finland. 

Material  Raw materials 
for secondary 
material manu-

facturing, t  

End-product, Produced 
secondary material, t1  

Rejected end-product, t2 

Ash fertilizers (2015) 45 324  29 165 (121 656*)  45 833  

Ash fertilizers (2018) 86 008  55 813 (176 548*)  96 240  

Solid organic fertilizers (2015) - 14 641  0  

Solid organic fertilizers (2018) - 19 944  0 

Liquid organic fertilizers (2015) - 152 657  9 728  

Liquid organic fertilizers (2018) - 75 932  15 899  

1 First figures of ash fertilizers are end-products from secondary material manufacturing. Figures with asterisk (*) represent the 
amount of secondary materials produced directly without processing phase. Sum of two figures row wise = total amount of end-
products. 
2 End-product not used as fertilizer (backfilling, losses etc.) from total produced secondary material. 

 

Production of secondary materials differs between ash and organic fertilizers (Table 20). Some amount 

of useful combustion waste act as raw materials for secondary material manufacturing. Most of the waste 

are considered as end-product without any treatment or manufacturing. 30-40 % of combustion wastes 

qualified as ash fertilizers are not used as fertilizers (regarded as rejected in Table 20). Organic fertilizers 

don’t have a similar production path, hence there is no raw materials data available. Some of organic 

fertilizers are also rejected. 
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2.3.11 Sludge from wastewater treatment 

 

 

Figure 12: Data sources regarding sludge from wastewater treatment in blue notes and orange notes indicating big-
gest data gaps/missing data. 

Data regarding the treatment and utilization of the sludge from municipal wastewater treatment in 2015 

and 2018 (Figure 12) were obtained from two comprehensive studies done in 2017 and 2019 by Finnish 

Water Utilities Association (FIWA) (Vilpanen & Toivikko 2017; Konola & Toivikko 2019). The studies 

supplemented the VAHTI/YLVA data with, for example the Finnish Food Authority’s annual declarations 

data, the monitoring data of the ELY Centers and direct enquiries to operators. According to the studies 

sludge is mostly utilized and only rarely incinerated in Finland. Data were not available from all the 

treatment plants, one reason being that data regarding treatment plants that have a municipal environmen-

tal permit were not readily available. Better availability of these permits would improve the accuracy of 

the data. 

The data regarding wastewater sludges from industrial processes were obtained from VAHTI/YLVA da-

tabase. Some estimates for the ratios of sewage to process sludge could be obtained through business 

surveys or closer studies on the subject. To exemplify, in 2018 wood, paper and pulp, and food industries 

generated roughly 140 000 tons of organic (rather than inorganic) sludges but the composition and fate of 

these wastes is very heterogenous and therefore needs additional investigation in future (Table 21). 

 
Table 21: Total supply and supply to material recovery of sludge from municipal wastewater treatment plants in 
2015 and 2018 in Finland.  

Material Total supply, t Material recovery, t 

Sludge from wastewater treatment (2018) 133 567 112 687 

Sludge from wastewater treatment (2018) 173 917  144 325  

 

2.3.12 Sand, gravel, clay and crushed stone  

 

For the recovery of sand, gravel, clay and crushed stone, data was not available. This is largely due to 

the fact that the government decree on the recovery of soils classified as waste did not come into force 
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as expected and hence data on this material and its recovery is not available at all. This decree is ex-

pected to improve the data availability significantly. The available data is limited to crushed stone but as 

this data is not comprehensive, it is not presented. 

VAHTI/YLVA contains data on contaminated soils that have been received at waste management facili-

ties having a permit for their treatment. Such soils are, however, often landfilled and no data are available 

on the fraction that is treated and used for earth works elsewhere. In addition, in this database all these 

types of waste are aggregated into one single waste class, meaning that it is not possible to assess the 

contribution of different types of soil. Finally, assessing amount of reject, export, energy production or 

end-product via this data source alone is not possible. According to the data received from Confederation 

of Finnish Construction Industries RT, the volumes of aggregates reused within a construction site or 

received from other sites were up to 67 Mt and 74 Mt in 2015 and 2018, respectively. These material 

flows, however, cannot be classified as secondary materials in similar manner as for the rest of the mate-

rials in the report. For the above reasons, summary accounts for secondary sand, gravel and clay were not 

compiled.  

 

2.4  Discussion and conclusions 

 

In the current study, we estimated the material flows relating to secondary material production in Finland 

and developed methodology for compiling such accounts. These secondary material accounts can be used 

in compiling material-specific supply and use tables, an example of which was provided for glass waste 

and its use for the production of secondary glass materials.  

Data availability, quality and coverage varied greatly from material to material and according to the stage 

of the waste-to-secondary material -cycle. Overall, the most reliable sets of data were collected for the 

last step of the cycle, that is, the actual manufacture of the secondary materials. For paper, cardboard, 

different metals, plastics, glass, mineral materials from incineration of slag, and fertilizers, we assess that 

the supply of the secondary materials were highly representative for the Finnish economy (particularly in 

2018). For crushed concrete and bricks, these pieces of the accounts were somewhat less reliable due to 

the lower coverage of the primary data.  

For accounting purposes, the data on the earlier stages of the waste-to-secondary material -cycle contained 

considerable shortcomings. In the accounts, the supply and use should always be equal with minimal 

balancing items. E.g. supply of a specific waste from other industries should be equivalent to the use of 

this particular waste by the secondary material manufacturing industries. In this work, these figures were 

compiled independently using different and varying sources of data. This way, we estimated the data 

availability and quality for each stage of the cycle independently. To balance the accounts e.g. supply and 

use at different stages would need additional efforts. To this end, the representativeness of the data at each 

stage would need to be assessed. In many cases, however, this would be laborious if not impossible con-

sidering the current availability of data e.g. on the industry-specific generation of waste.  

The case of glass, which was used as an example of the compilation of the actual accounts in subchapter 

2.3.8, sheds light on the problem at hand. Data on waste generation was obtained from VAHTI/YLVA 

compliance monitoring system but they represent only facilities with an environmental permit granted by 

a state authority. In principle, these data could be used as a basis for industry-specific upscaling based on 

revenues, economic outputs or manufacturing volumes similarly to the accounting work by Salminen et 

al. 2018 and Weckström et al. 2020 for water and wastewater accounts. However, unlike water use and 

wastewater generation, glass waste generation in manufacturing facilities may often arise from other than 
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regular core operations of a facility. This was suggested by the very different industry-specific glass waste 

generation volumes in 2015 and 2018 (see Annex I). Hence, such generalization seems methodologically 

invalid and would likely result in biased results. Also, waste glass collected via the deposit refund system 

(Suomen palautuspakkaus Oy Palpa) generates one aggregate figure containing beverage bottles returned 

from households and all other sectors of the economy. Hence, no industry-specific data for this figure can 

be calculated. This applies to glass waste collection arranged by waste management industry in general.     

In the course of the work several potential avenues to facilitate and to improve the compilation of high-

quality secondary material accounts were observed. First, data reporting in VAHTI/YLVA compliance 

monitoring system should be made unambiguous in terms of waste nomenclature, generation, reception, 

treatment and recovery and storage of waste and choices related to that. Risks of double counting are 

considerable and for their elimination plenty of manual data reviewing is required. In addition, great var-

iation exists in the way enterprises report their data on the generation and use of waste to VAHTI/YLVA 

system. This hampers the extractability ja usability of the VAHTI/YLVA data for accounting and research 

purposes. Introduction of identifiers for individual sets of waste would be useful to allow their tracking 

along the multiple stages of waste-to-secondary material -cycle. The revision of the waste information 

system is underway in Finland. Some improvements e.g. to the higher accuracy in the origin of waste are 

expected. The considerations presented here related to secondary material accounting merit to be ad-

dressed in the revision process. 

New, voluntary systems (databases) benefitting from sustainability reporting by individual companies and 

organizations or linked to green deals made by industries might also improve the availability and acces-

sibility of data that is essential to the compilation of the accounts along the waste-to-secondary material -

cycle. For now, according to the experience gained in ENVECO project, compilation of secondary mate-

rial accounts is laborious, time-consuming, and prone to biases. 

Economy-wide secondary material accounting benefits greatly from disaggregated data both by origin of 

waste and its material composition, since it enables more efficient targeting and monitoring of policies 

related to waste and CE. The current waste statistics and material flow accounts tend to categorize waste 

types and provide data in an aggregated form, making it more difficult and uncertain to utilize the data in 

accurate, material-specific waste accounts. Taking the need for disaggregation into account in develop-

ment of reporting schemes would make it more reliable to utilize the data in high-resolution accounts. 

Utilizing smart digitalization could enable more detailed accounting without excessive administrative 

burden. 

In addition, there is great variation in the way enterprises report the generation and use of waste. Data 

management within each company affects how easily the data is available to be extracted for accounting 

and research purposes. Often data on waste is still scattered and difficult to access, even within companies. 
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Chapter 3 addresses the possibilities of developing indicators measuring forest ecosystem condition 

within SEEA-EEA framework in Finland, with support of machine learning, remote sensing, and spatial 

analysis methods.  

The chapter starts with a brief outlook and discussion on ecosystem accounting indicators in SEEA-EEA 

framework (chapter 3.1) and literature review on forest ecosystem condition indicators, including assess-

ment of possibilities for producing wall-to-wall maps of these indicators with remote sensing and existing 

spatial data. This was the first objective of WP3. 

Chapter 3.2 serves as an introduction to current state-of-the-art on machine learning methods in remote 

sensing of forests. 

The second objective of WP3 was initially to test if introducing machine learning methods, such as deep 

learning, will improve the prediction results of selected forest variables and indicators compared to tradi-

tional RS modeling methods presently used in Finnish multi-source national forest inventory (MS-NFI). 

However, as we had completed the literature review on indicators, we saw it equally appropriate and 

feasible to look at existing national spatial datasets (MS-NFI and topographic map database) and see how 

they could be used as source data for ecosystem condition indicators. Specifically, we wanted to find out 

how forest fragmentation could be quantified and monitored with landscape indicators and application of 

existing geospatial analysis tools and methods. For both approaches, data and methods are elaborated in 

Chapter 3.3 and results and discussion in Chapter 3.4. 

Assessment of uncertainties related to these methods, our third objective, is also discussed in Chapter 

3.4. Conclusions and recommendations for further research are given in Chapter 3.5. 

The fourth and last objective of WP3 was to provide the value of forests by using monetary asset ac-

counts. The value for timber production was calculated by using three approaches. The value of carbon 

sequestration was expressed as net present value for different prices of carbon. Since the forest valuation 

part is different in scope and methodology, it is discussed separately in Chapter 4.  

3.1 Indicators in ecosystem accounting  

 

The role of the SEEA EEA is to integrate data from various sources such as basic statistics, surveys, 

scientific measurements, spatial and remote sensing data, administrative entities, and censuses, to provide 

a coherent and unified understanding of ecosystems and their relationship to the economy. Information 

from the various ecosystem accounts and related accounts in the SEEA EEA framework can be organized 
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and integrated to provide policy-relevant indicators and aggregates (UNSD 2020). According to the draft 

SEEA-EA guidelines, indicators are defined as follows:  

“A statistical indicator is the representation of statistical data for a specified time, place or any other 

relevant characteristic, corrected for at least one dimension (usually size) so as to allow for mean-

ingful comparisons. It is a summary measure related to a key issue or phenomenon and derived from 

a series of observed facts. Indicators can be used to reveal relative positions or show positive or 

negative change in a regular interval. Indicators are usually a direct input into national and global 

policies. In strategic policy fields, they are important for setting targets and monitoring their achieve-

ment. By themselves, indicators do not necessarily contain all aspects of development or change, but 

they greatly contribute to explaining them. If consistent methodology is employed, they allow com-

parisons over time and between, for instance, countries and regions, and in this way assist in gather-

ing ‘evidence’ for decision making”. 

Furthermore, three types of indicators are considered within the draft SEEA-EA (UNSD 2020), namely 

a) Aggregates, statistics for related categories that can be grouped together or aggregated in order 

to provide a broader picture. Example: summing the areas of different forest ecosystem types 

across an ecosystem accounting area. 

b) Composite indices, in which different variables are combined using a weighting pattern or ag-

gregation rule to communicate the overall movement or trend. Example: measures of forest eco-

system condition which involve weighting together relevant condition indicators. 

c) Ratio indicators, derived by combining data from different accounts. Example: the flows of eco-

system services per hectare from different forest types. 

These indicators can be derived from any of the core accounts (ecosystem extent, ecosystem condition, 

ecosystem service supply and use in physical and monetary terms, ecosystem asset account) or thematic 

accounts (biodiversity, climate change, oceans, urban areas) of the accounting framework. Sometimes the 

same indicator can be even used in several accounts with slight modifications.  

In Finland, the implementation of SEEA-EEA framework, as well as reaching a consensus of commonly 

agreed indicators, are still a work in progress. The development of National Ecosystem Services Indicators 

(www.biodiversity.fi/ecosystemservices/home; see Mononen et al. 2016 and Lai et al. 2018) following 

the CICES classification system and the Cascade model (Haines-Young and Potschin 2010) has had a 

good start. However, further work is needed especially for the ecosystem condition indicators, in lever-

aging the possibilities of remote sensing, machine learning and spatial analysis methods, and practical 

implementation to bring these indicators to the accounting framework.  

Assessment of ecosystems and their services are set in the EU Biodiversity strategy to 2020, involving 

assessment of ecosystem condition, since condition directly impacts ecosystem capacity to provide eco-

system services (Maes et al. 2013, 2014). In order to be able to account for ecosystem services, we un-

derstand that the extent and condition of ecosystem assets should be known and accounted for first, while 

taking into consideration what is feasible and realistic with the source data, methods and resources avail-

able.  

In this study, we are concentrating on ecosystem condition indicators for forest ecosystems. 

3.1.1 Indicators on forest ecosystem condition 

The SEEA ecosystem condition typology (ECT) is a hierarchical typology for organizing data on ecosys-

tem condition characteristics (UNSD 2020). The ECT contains three groups and six classes. The first two 

classes (physical and chemical state) describe abiotic ecosystem characteristics, forming the first group. 

The next three classes (compositional, structural and functional state) describe biotic ecosystem 

http://www.biodiversity.fi/ecosystemservices/home
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characteristics, the second group, and the sixth class describes landscape level characteristics which is 

the third group. The condition indicators are meant to be calculated for each ecosystem type and disaggre-

gated by ecosystem condition subclasses (UNSD 2020). 

In this project, we scanned the existing literature on published ecosystem condition indicator sets, and 

selected the set published in Czuz et al. (2018a) and Maes et al. (2018), as comprehensive and relevant 

for our purposes. We then reviewed the indicators and re-organized the table to follow the ECT in order 

to find a subset that is both comprehensive (i.e. suitable for describing forest ecosystem condition in 

Finnish boreal forests) and either observable with remote sensing or derivable from existing spatial data 

(Table 22 and Annex 2). The most promising indicators from this subset were finally selected for further 

testing and development. The indicators tested and developed here can be classified as structural state and 

landscape indicators following the ECT. 

 
Table 22: Indicators on forest ecosystem condition and the potential of Remote Sensing and existing spatial data 
(e.g. national forest inventories, topographic map database, etc.) 

SEEA ECT 

class 
Description and examples of indicators 

Potential of 

Remote 

Sensing 

Potential of 

existing spa-

tial data    

Indicators tested/devel-

oped in this study 

Physical state 
indicators  

Physical characteristics of forest asset abiotic com-

ponents, such as soil structure (e.g. soil organic car-

bon, soil thickness) and water availability  

Low Low - 

Chemical state 

indicators 

Chemical composition of the forest asset abiotic 

components, such as nutrient / material balances 

(e.g. acidification, chemical status of ground water, 

tropospheric ozone concentration) 

Low Low - 

Compositional 

state indicators 

Characteristics of forest asset compositional state, 

such as composition / diversity of ecological commu-

nities at a given location and time (e.g. invasive alien 

species richness, forest tree species richness, bird 

indices, deadwood, naturalness) 

Medium  Medium Forest tree species groups 

distribution 

Structural state 

indicators 

Overall structural state characteristics of a forest as-

set, including characteristics on vegetation, biomass, 

and food chains (e.g. NDVI, Leaf Area Index, Grow-

ing stock biomass volume, structural heterogeneity) 

High High Forest stand indicators: total 

volume, volume by tree spe-

cies groups, diameter at 

breast height, average tree 

height 

Functional state 

indicators 

Overall functional state characteristics of a forest as-

set, including characteristics on ecosystem process 

and disturbances regimes (e.g. primary productivity, 

forest age, community age, disturbance frequency) 

Medium Medium Average tree height as a 

proxy for age 

Landscape indi-

cators 

Overall characteristics of forest ecosystem assets 

that are quantifiable at larger (landscape) scale but 

that have an influence on the local condition of eco-

systems (e.g. fragmentation, connectivity). 

Medium High Fragmentation patterns of 

natural/seminatural land-

scapes, fragmentation pat-

terns of forest landscapes 

 

 

It should be also noted that ECT include only indicators describing ecosystem state. This reflects the 

‘state orientation’ of condition indicators as a preference (Czúcz et al. 2018c). Alternatively, when little 

data on state is available, ecosystem condition can also be measured through ecosystem pressures as an 

indirect approach (UNSD 2020). This should be done with caution, however. Considering that pressures 

lead to degradation (depletion, accumulation) of environmental stocks, it is the stocks themselves that 

should be considered as ecosystem condition variables instead of their change (degradation / depletion 

rates, fluxes, flows) (Czúcz et al. 2018c). State indicators should be preferred as they can be used to 
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formulate clear policy messages on ecosystem degradation; and the degree of policy attention highlights 

those environmental stocks that are perceived as the most valuable or most endangered (UNSD 2020). 

For these reasons, in this study we consider only state indicators, not pressures. 

A more extensive annotated table including an exhaustive list of proposed forest ecosystem condition 

indicators can be found in Annex 2. Like stated earlier in this chapter, this table is a mostly based on 

existing and exhaustive work done in Czúcz et al. (2018a) and the 5th MAES report (Maes et al. 2018). 

Our additions to this table in Annex 2 include re-organizing it to follow ECT and two additional columns: 

potential of remote sensing and potential of MS-NFI, which give our descriptive assessment of the poten-

tial in producing these indicators in Finland with remote sensing methods and spatial analysis of multi-

source national forest inventory data. After all, if the objective of ecosystem accounting is to be spatially 

explicit with the ability to produce both tables and maps from these accounts, we need to have also spa-

tially explicit source data for the indicators. 

 

3.2 Literature review: Machine learning methods in the remote sensing of 

forests  

3.2.1 Background 

Remote sensing of forests is typically multivariate analysis of digital remote sensing data, containing 

values of satellite and aerial image pixels or lidar and photogrammetric point clouds. In addition to the 

values of individual pixels or points, the structure and organization of neighboring pixels and points are 

a basis for features that are used to predict the characteristics of forests. The features that can be extracted 

from remote sensing data include (but are not limited to) spectral tone (color), texture, pattern, shape, 

shadows or association (to other features) (Lillesand et al. 2004). E.g. spectral tone can be applied to 

classifiers or estimators based on e.g. regression or similarity in spectral feature space. The more complex 

features are applied, the higher learning capability is required of the classifiers and estimators. When 

utilizing high-resolution multi- or hyperspectral image data in combination with geometric point clouds, 

sufficient machine learning capability is required in the data analysis in order to utilize the full potential 

of the data. 

Nowadays, various machine learning algorithms are the method of choice for processing large data sets 

with complex, nonlinear structure. The most widely used ML methods in remote sensing are support 

vector machines (SVM) and random forests (RF) due to them working well with high-dimensional data, 

being straightforward to use and not requiring heavy computational resources. Both methods have been 

used for multiple tasks, such as predicting land cover (e.g. Gòmez et al (2016)) and classifying tree species 

from Sentinel-2 satellite data (Grabska et al (2020)) and hyperspectral remote sensing data (Viinikka et 

al (2020), Modzelewska et al (2020)). Aside from SVM and RF, other commonly used ML algorithms 

are k-nearest neighbors (kNN), gradient boosting trees (GBM), gaussian processes and various deep learn-

ing (DL) methods. 

In the following we take a closer look at a number of potential machine learning methods for the remote 

sensing of forests based on literature review.  

3.2.2 K nearest neighbors method 

K-nearest neighbors algorithm (k-NN) is a machine learning method which is widely applied in remote 

sensing based forest inventory. It was originally developed by Fix and Hodges (1951). It can be used both 

for classification and estimation of continuous numerical variables. In both cases the neighbors are taken 

from a set of objects for which the class (for k-NN classification) or the property value (for k-NN 
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regression) is known. This can be considered as the training set for the algorithm, although no explicit 

training phase is required. 

The method was first suggested for satellite image-based forest inventory in the form of reference sample 

plot method by Kilkki & Päivinen (1987), and subsequently it has been widely applied in remote sensing 

based forest inventories ( Muinonen and Tokola 1990; Tomppo 1991; Tokola et al. 1996, Tokola & Mui-

nonen 1996, Nilsson 1996,  Franco-Lopez et al. 2001). .At the moment, k-NN is the method used e.g. in 

Multi-Source National Forest Inventory (MS-NFI) to predict wall-to-wall maps of forest parameters. 

In the k-NN method the training consists of the k nearest observations in feature space. The method has 

several advantages: it is non-parametric, not requiring parametric models for  the estimation or classifi-

cation task, all output variables of interest can be determined at the same time, while simultaneously 

retaining the covariance structure of e.g. forest variables of training data. Additionally, as the method does 

not extrapolate values outside the training data, it will not produce unrealistic estimations in the case when 

independent test data feature space is different from training data. 

K-NN is called instance-based learning, or also lazy learning, because instead of performing explicit gen-

eralization, the 'model' is approximated only locally; the algorithm compares new observations with ob-

servations present in the training data. The algorithm generally works well in multi-dimensional feature 

spaces with relatively low number of dimensions (such as satellite image bands), although training data 

features representing different physical units or markedly different scales of variation need to be normal-

ized for optimal performance.  

The main drawback of the method is related to the fact that current state of the art remote sensing data 

sets, such as combinations of lidar or photogrammetric point clouds and high-resolution imagery data, 

make it possible to derive a very large number of remote sensing features describing the forest character-

istics. Consequently, the dimensionality of the remote sensing feature space increases greatly, and it may 

be computationally infeasible to use all possible remote sensing features when processing large inventory 

areas. Also,  when the dimensionality grows, all training data become sparse in relation to the dimensions 

(Hinneburg et al. 2000), which makes estimators that are based on distance or proximity in the feature 

space, such as k-NN, prone to 'the curse of dimensionality’ (Beyer et al. 1999); the distances in the feature 

space become insignificant, when the number of dimensions exceed the number of training observations. 

Thus, higher-level machine learning algorithms are required for producing an appropriate subset of fea-

tures or appropriate weights for a number of features for the estimation procedure, considering their use-

fulness in predicting the forest attributes as well as their mutual correlation. In the following we present 

number of alternatives for this purpose. 

  

3.2.3 Sequential forward and backward selectors 

Sequential forward and backward selection methods (Whitney 1971) are based on iterative selection of 

RS features for picking an optimal data set for the estimation task. Sequential forward selection starts 

from empty set of data features, and in each consecutive iteration the feature giving the best estimation 

result with already selected features is selected. The sequential backward selection which is seldom ap-

plied in the context of remote sensing starts with a set containing all available features and, in each itera-

tion, the worst performing feature is excluded from the set. In both methods the iteration proceeds until 

there is no improvement in the estimation result (Järnstedt et al. 2012).  

Typically, the measure for the RS based estimation result is proportion of correct classifications, or root 

mean square error or bias of numerical variables estimated. Typical weakness of the sequential for-

ward/backward selection methods are their tendency to get stuck in local optima, e.g. in the case when 

the addition of any extra feature does not improve the estimation result individually, the algorithm is not 
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able to proceed further. E.g. based on Kudo & Sklansky (2000), testing several feature selection algo-

rithms has shown that sequential forward/backward selectors work best in relatively simple estimation 

tasks and in feature space whose dimensionality is relatively low (such as image bands of medium reso-

lution satellite imagery). On the other hand, it has been noted that even in the feature space formed by 

Landsat TM satellite image bands, sequential forward selection algorithm may get stuck with the first 

(best performing) image band, when adding any individual band does not improve the estimation or clas-

sification result, even if the use of all image bands provides better result than any band individually (Hol-

opainen ym. 2009). 

A variation for sequential forward selection that is called nested forward selection has been suggested for 

dealing with the method’s liability for the local optima (Pohjankukka et al. 2018). in this variation the 

original data set is divided to N subsets, and the selection of data features is carried out from each subset. 

The objective of the method is to examine the sensitivity of the feature selection to changes in the input 

data set.   

  

3.2.4 Random Forest 

Random forest (RF) is a decision tree-based machine learning method for e.g. classification and regression 

tasks (Breiman 2001). It is based on constructing multiple decision trees that serve as models in predicting 

the variables on interest.  RF has been found to require less complex computations and running time 

compared to most other classifiers, as well as having high classification accuracy in especially intricate 

models (Cutler et al. 2007). Typically, in the training phase the algorithm builds a multitude of decision 

trees, and the algorithm tests various decision trees based on subsets (resamples) of predictor variables 

for finding the optimal result for the variables of interest. In the decision trees each node represents a test 

on a variable, and each branch represents an outcome of the test. 

RF algorithms have several operational advantages. It typically requires fewer parameters than other clas-

sifiers (Akar and Gungör, 2012). RF is multivariate, non-parametric and quick to implement; however, 

the method also has limitations. Since RF predictions are weighted averages of the training data, the al-

gorithm cannot extrapolate beyond the range of the training data. RF methods also typically require a 

greater number of training observations than parametric regression to perform well. The main advantage 

of the RF in analyzing remote sensing data is their capability to model complex interactions between 

multivariate data. 

An individual decision tree is always somewhat prone to overfitting within certain training data set, but 

this problem can be controlled by using sufficient number of decision trees (Stephens 2017). Generally, 

the use of RF method assumes sufficiently large training data set. RF method has been widely used method 

in remote sensing of forests (Ballanti et al. 2016, Tuominen et al. 2018, Sabat-Tomala et al. 2020).  

  

3.2.5 Support Vector Machines 

Support vector machines (SVM) are supervised learning models that are used for classification and re-

gression tasks. A support-vector machine is used for constructing hyperplanes in multi- or hyperdimen-

sional feature space, and these hyperplanes are used for the separation or classification of observations 

based their input values in the feature space. SVMs are used to define a space in which the different 

classes are maximally separable. The hyperplanes are adjusted in the feature space in the way that max-

imizes the margin separating the classes in the training data, and unlabeled samples are then classified 

according to the side of the hyperplane on which they fall. Linear SVMs are the most common form, also 

nonlinear variants have also been designed (Kumar et al. 2020). Good separation is achieved by a 
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hyperplane that has the largest distance to the nearest training-data point of any class, since in general the 

larger the margin, the lower the generalization error of the classifier (Hastie et al, 2008). SVMs have been 

used for wide variety of data and applications. which can be used for classification, regression, or other 

tasks like outlier detection. 

SVM is generally considered a well-suited machine learning method e.g. for image interpretation (Ballanti 

et al. 2016, Sabat-Tomala et al. 2020). The main advantages of SVM are its’ applicability and good sep-

aration capability in high- or hyperdimensional feature space as well as the classification capability with-

out a priori information. SVM is trained by training data, based on which the SVM can classify any inde-

pendent test data. The representativeness of the training data determines the quality of the classification 

in independent data. 

  

3.2.6 Genetic algorithms 

The genetic algorithms a are based on imitating evolutionary natural selection. The machine learning 

procedure in remote sensing typically contains following phases: The general GA procedure begins by 

generating an initial population of strings (corresponding to chromosomes or genomes), that consist of 

random combinations of predictor variables (which correspond to genes). The chromosomes are consid-

ered binary strings having values of 0/1 indicating that certain variable is either “selected” in the subset 

or “not selected”. The strings evolve over a user-defined number of iterations (i.e. generations). This 

evolution may include following operations: selecting strings for mating by applying a user-defined ob-

jective criterion (the more copies in the mating pool, the better), letting the strings in the mating pool to 

swap parts (cross over), causing random noise (i.e. mutations) in the offspring (i.e. children). The resulting 

strings are passed to the next generation. This process is repeated until a predefined criterion is fulfilled 

or a predetermined number of iterations have been completed (Broadhurst et al. 1997; Tuominen and 

Haapanen 2013; Moser et al. 2017). 

Typical task for a genetic algorithm in remote sensing is the selection of an appropriate set of remote 

sensing features from a hyper-dimensional feature space. Additionally, other estimation and classification 

parameters such as e.g. value on k in k-NN estimation can be optimized by GA. Typical criteria for a GA 

procedure in remote sensing is for example minimizing the RMSE or bias of remote sensing based forest 

estimates, or maximizing the proportion of correct classifications.   

As in natural processes, there is a random effect in a GA procedure, which affects the result. Additionally, 

user-defined parameters such as population size, number of generations, amount of randomness and mu-

tations allowed affect the results of the procedure.  

The main advantage of the GA method in remote sensing is its’ proven performance in empirical estima-

tion and classification tasks (e.g. Haapanen & Tuominen 2008, Tuominen et al. 2018). Although there is 

no guarantee of finding the subset representing a global optimum within certain input variable dataset, 

and the algorithm does not go through all possible combinations input variables (which often would be 

also computationally unfeasible), solutions close to optimal can usually be found in a feasible computa-

tional time by GA (Garey and Johnson 1979). 

  

3.2.7 Artificial neural networks 

Artificial neural networks (ANNs), often called simply neural networks are computing systems that try to 

imitate biological neural networks. An ANN is based on a collection of connected units or nodes called 

artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the syn-

apses in a biological brain, can transmit a signal to other neurons.  
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An artificial neuron that receives a signal then processes it and can signal neurons connected to it. The 

"signal" at a connection is a real number, and the output of each neuron is computed by some non-linear 

function of the sum of its inputs. The connections are called edges. Neurons and edges typically have a 

weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a 

connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses 

that threshold. Typically, neurons are aggregated into layers. Different layers may perform different trans-

formations on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output 

layer), possibly after traversing the layers multiple times. 

Neural networks trained by processing examples, each of which contains a known "input" and "result," 

forming probability-weighted associations between the two, which are stored within the data structure of 

the net itself. The training of a neural network from a given example is usually conducted by determining 

the difference between the processed output of the network (often a prediction) and a target output. This 

is the error. The network then adjusts its weighted associations according to a learning rule and using this 

error value. Successive adjustments will cause the neural network to produce output which is increasingly 

similar to the target output. After a sufficient number of adjustments, the training can be terminated based 

upon certain criteria. This is known as supervised learning. 

Such systems "learn" to perform tasks by considering examples, generally without being programmed 

with task-specific rules. For example, in image recognition, they might learn to identify images that con-

tain cats by analyzing example images that have been manually labeled as "cat" or "no cat" and using the 

results to identify cats in other images. They do this without any prior knowledge of cats, for example, 

that they have fur, tails, whiskers, and cat-like faces. Instead, they automatically generate identifying 

characteristics from the examples that they process. 

Multilayer perceptron (MLP) (Bishop 1995) is a simple form of ANN. It is feedforward NN, I.e. the 

information moves in only one direction, that is forward from the input nodes, through the hidden nodes 

and to the output nodes. There are no cycles or loops in the network where the connections between the 

nodes do not form a cycle, as in recurrent neural networks. The feedforward neural network was the first 

and simplest type of artificial neural network devised. Typically, MLP NN is composed of input layer, 

one or more hidden layers and output layer. The purpose of MLP is to train the NN to minimize the 

difference between NN output values and the correct values picked from the training data, by adjusting 

the weighting between the inputs. Thus, the training of MLP is multivariate optimization task, aiming at 

minimizing the error of user-defined cost function. 

The training of artificial neural network is relatively easy but, to a certain extent, they have been sidelined 

by other machine learning methods in remote sensing applications, such as genetic algorithms and support 

vector machines. This is mainly because in empiric tests GA and SVM often have  performed better than 

ANN in prediction and classification tasks (Frias-Martinez et al. 2005, Pohjankukka et al. 2018). 

  

3.2.8 Convolutional neural networks 

Convolutional neural network (CNN) are a class of deep neural networks, often applied to analyzing 

visual imagery. CNNs are a form of deep learning, which refers to the use of multiple hidden layers in the 

network. CNNs typically are fully connected networks, where each neuron in one layer is connected to 

all neurons in the next layer. They utilize the classifying capability of ‘traditional’ ANN while simultane-

ously utilizing the recognition of features enabled by the convolutions. As the genetic algorithms, also 

CNN was inspired by biological processes; whereas GA imitates natural selection, CNN somewhat re-

sembles the generation of visual sensation and shape or pattern recognition by biological organism.  
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The "fully-connectedness" of these networks makes them also prone to overfitting data. This often neces-

sitates that very large training data sets are used with CNN. CNNs require less pre-processing compared 

to other image classification algorithms and they can construct complex connections between the elements 

of input data (e.g. pixels/points), which means that CNN can be trained to learn features that need to be 

user-provided for traditional (non-deep learning) algorithms. A major advantage of CNN is the independ-

ence from prior knowledge of feature design.  

In the recent years, the interest in DL utilization has increased, especially due to convolutional neural 

networks (CNN) having become de-facto method in visual recognition tasks. CNNs have shown their 

potential in Earth observation (EO), as they have been used to detect over 1.8 billion trees from very high-

resolution satellite images in West Africa (Brandt et al 2020), to globally map and date burned areas 

worldwide (Pinto et al 2020), and to segment floods from radar imagery (Nemni et al 2020). While the 

most common use cases for CNNs in remote sensing are various classification tasks, such as land use and 

land cover (LULC) tasks or scene classification tasks, they have also shown potential for predicting con-

tinuous targets. For example, CNNs have been used to estimate the amount of cyano-bacteria in river 

water from aerial hyperspectral images (Pyo et al (2019)). The major downsides of DL are the heavy 

computational costs and requirement for large, labeled datasets. Thankfully, both of these problems can 

be in certain amounts addressed with transfer learning (using DL model trained with large, labeled dataset 

as a feature extractor) or self-supervised learning (first solving simpler, automatically generated task and 

then applying transfer learning to the original problem), but utilizing these methods with EO data is not 

yet well studied. 

CNN has proved to be very successful in its’ original purpose, i.e. in image recognition, which has been 

a very traditional machine learning task. Also, in the remote sensing of forests the method has shown 

potential for improving forest estimates and classifications compared to more traditional classifiers and 

estimators (Ayrey and Hayes 2018, L. Wang et al. 2019, Annala et al. 2020). 

 

3.2.9 Conclusions 

The use of existing machine learning algorithms provides a means for better utilizing the full potential of 

current state of the art remote sensing data in predicting forest characteristics. Based on literature study, 

several machine learning methods, such as RF, GA or SVM, have produced relatively similar estimation 

and classification results when using high-dimensional input data sets. Based on these methods it is pos-

sible to select a list of features that results in significantly better predictions compared to the use of all 

potential features. 

Generally speaking, no matter which ML algorithm is used, utilizing only optical data is usually not 

enough for accurate predictions for structural variables such as diameter at breast height (DBH), basal 

area or growing stock volume. Halme et al (2019) used SVM and Gaussian process regression (GBR) for 

predicting mean height, basal area, stem biomass, leaf area index (LAI) and main tree species from both 

aerial hyperspectral images and Sentinel-2 satellite imagery. However, compared to studies utilizing also 

LiDAR data (e.g. Tuominen et al (2017)), they achieved considerably worse overall results. For example, 

Halme et al (2019) report 37% relative RMSE for mean height and 45% for basal area at the plot level, 

whereas Tuominen et al (2017) achieved 10% and 24% respectively for the same forest attributes. 

The expected performance of sequential forward/backward selectors is not good in high-dimensional in-

put data, due to their tendency to get stuck in local optima. Thus, they are excluded from further experi-

mental analysis.   
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Most machine learning methods are still limited by the fact that they require user derived features as their 

input, and they are not capable of inputting new information to the prediction from the raw remote sensing 

data.  

Deep learning methods such as deep neural networks including CNN are not limited to user-derived fea-

tures. They can scan through raw remote sensing data (assuming that the data is in regularized form) in 

order to form their own features for the task underway. On the other hand, with deep neural networks 

much of that process occurs in a black box, which makes it difficult for the user to extract that new infor-

mation for further applications. 

3.3 Data and methods 

3.3.1 Indicators of forest fragmentation from existing spatial data 

 

To develop indicators for forest fragmentation, our aim was to see how well the modeling framework 

proposed by Estreguil et al. (2014) can be applied for calculating landscape indicators for ecosystem 

condition accounting in Finland. The framework combines and harmonizes information on habitat pattern, 

fragmentation and connectivity. In this study, however, connectivity was left out because of difficulties 

related to defining the required dispersal ability parameter, which is species specific (Estreguil et al. 

2014). On the other hand, Czúcz et al. (2018c) pointed out that fragmentation and connectivity are corre-

lated and thus redundant concepts; since the more fragmented a landscape is, the less connectivity it has. 

We calculated 15 different forest fragmentation indicators adapting the methodology developed in Estre-

guil et al. (2011, 2014) and implemented over European forest ecosystems (EEA 2015). These indicators 

are also part of the Streamlining European Biodiversity Indicators set (SEBI 013, Fragmentation of natural 

and semi-natural areas). The SEBI was a process which was set up in a response to a request from the EU 

Environment Council to monitor progress towards reaching the targets of the EU Biodiversity strategy to 

2020 (EEA 2012). Given this background, the SEBI indicators offer a solid background for further devel-

opment of ecosystem condition indicators in Finland. 

The European maps and statistics of natural/seminatural landscape and forest fragmentation patterns 

(EEA 2015) are based on CORINE land cover maps at 1 ha grain size. Both ecological and spatial detail 

are adequate for mapping these patterns in European scale, but in order to apply the SEBI indicators in 

national scale, we chose input data produced by Finnish public authorities.  

Two main data sources were used in this study. To characterize the general landscape, we used the topo-

graphic map database2 by National Land Survey of Finland, while the MS-NFI data3 by National Re-

sources Institute Finland (LUKE) was used to characterize different focal boreal forest habitats (i.e. eco-

system types). Both datasets were identified as key datasets for ecosystem accounting in an earlier study 

by Vihervaara et al. (2018) and are publicly available in spatial format. MS-NFI data is available at 20 m 

grain size for 2009, and at 16 m for years 2011, 2013, 2015 and 2017. The topographic map database is 

in vector format at 1:10 000 nominal scale and being constantly updated and thus only the latest version 

is publicly available. However, since the topographic map database is used in the production of MS-NFI 

as one of the input data layers to characterize all other LULC types other than forest, we were able to 

retrieve time-series of this data from LUKE’s archives. Using the topographic data together with MS-NFI 

 
2 https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/topographic-
database  
3 http://kartta.luke.fi/index-en.html  

https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/topographic-database
https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/topographic-database
http://kartta.luke.fi/index-en.html
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was straightforward as the topographic data was already rasterized and aligned to the same resolution and 

map grid in the MS-NFI production process (Mäkisara et al. 2019). 

An important note is that before doing any further processing, both MS-NFI and topographic map data 

from 2009 had to be first resampled from their native resolution of 20 m to 16 m to allow comparisons 

with later years. In concrete terms, it means that the baseline data of 2009 has less detailed information 

than the data it is compared to, which is good to keep in mind when interpreting the results. 

Since all SEBI-013 indicators are based on area proportions of the total landscape, the methodology can 

be applied at any scale – from local (e.g. municipalities, urban areas) to regional (e.g. administrative 

regions, watersheds) and national (e.g. whole Finland), as well as for any ecosystem type where suitable 

spatial data exists. In SEEA-EEA terminology, the scale of application would be equivalent to the eco-

system accounting area (EAA). To demonstrate the calculation of these indicators, we avoided the unnec-

essary computational burden of doing the whole country, but instead chose one MS-NFI mapsheet (M4) 

in Southern Finland, covering total area of 18 432 km2 and supporting a mosaic of different land use and 

forest types. As for the focal habitat, we concentrated on three different forest types based on tree species 

dominance: pine, spruce, and deciduous trees, and a fourth focal habitat type which consisted of all forests 

combined4. Lastly, to be able to see if any change happened in the indicator values and to set reference 

levels for each indicator, we calculated the indicators for two accounting years: 2009 and 2017. The indi-

cator values of 2009 were also chosen as the reference level values. 

Based on Estreguil et al. (2014), we used three different but complimentary landscape modelling ap-

proaches, each giving a different perspective on patterns of natural and seminatural areas and forest frag-

mentation: 

1. General landscape model. The landscape composition is summarized by measures describing 

the focal habitat in a landscape in terms of its total amount, its pattern and landscape context.  

2. Morphological pattern model. The focal habitat cover is divided based on their morphology 

into core areas, boundaries, linear features and islets. Fragmentation of the focal habitat type is 

characterized by indicators quantifying the share of focal habitat area in these morphological 

classes. 

3. Edge interface model. This model is derived from the integration of the two first models. Focal 

habitat edge interfaces are differentiated by morphology (edges or boundaries, linear features 

and islets) and characterized according to the similarity of adjacent habitats (whether the edge is 

situated next to natural/seminatural or anthropogenic/artificial habitats). In other words, the in-

dices derived from the edge interface model give us a measure of edge naturalness.  

A critical parameter for these models is the edge width. The edge width is set by user for the morpholog-

ical spatial pattern analysis (MSPA), as it determines the width of the focal habitat boundary, and subse-

quently impacts the patterns and proportions of interior, linear and islet landscape elements, and any in-

dicators derived from them. The same edge width should also be used for the disk radius of the 

neighborhood, when applying the general landscape model (see next chapter). Selecting the appropriate 

edge width is thus a fundamental assumption for these models, but not an easy one as different organisms 

and species respond differently to edges (Öhman & Eriksson 1998). In forestry the edge width is related 

to the height and structure of the forest, ranging from narrow (20 m) to wide (160 m) (Franklin & Forman 

 
4 Altogether more than 30 tree species can be found in Finnish forests, out of which the most common are Nor-
way spruce, Scots pine, Silver birch and Downy birch. All 30+ species are found in the sample plots of NFI, but in 
the MS-NFI, species-level data is available only for Norway spruce. Scots pine and all conifers other than Norway 
spruce form the group “pine” whereas Silver and Downy birch are handled as a single “birch” species group. 
Apart from these four most common species, the remaining species (most of them deciduous) are economically 
insignificant and very rarely form homogeneous stands and are thus pooled into species group “other deciduous 
trees”. For practical reasons, we decided to group the birch species group and other deciduous trees together. 
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1987). Estreguil et al. (2014) used edge width of 25 m, and for boreal forests edge widths of 32 and 64 m 

were suggested in an earlier study by Öhman & Eriksson (1998). For this study, we experimented with 

three edge widths (48, 112 and 240 meters), out of which 48 meters gave most feasible results. 

The following three sub-chapters give additional detail on the methodology used for indicator calculation. 

All GIS processing steps followed the methodology outlined in Estreguil et al. (2011, 2014) with some 

adaptations to Finnish context. Only free and open-source software, namely QGIS (general raster pro-

cessing, visualization), GRASS (complex raster operations) and Guidos Toolbox (morphological spatial 

pattern analysis) were used to perform all analysis steps, which are documented either in graphical models 

or processing scripts enabling easy replication and revision.  

3.3.1.1 General landscape indicators 

Habitat pattern in the landscape affects the interactions between and within species both within and be-

tween patches (Estreguil et al. 2014). The landscape context of habitats influences habitat content (e.g. 

forest condition), and thus offers feasible indicators for assessing ecosystem condition. 

First, to describe the general landscape composition, we reclassified the 38 LULC classes (see table 2.4 

in Mäkisara et al. 2019 for details) of the rasterized topographic map (Figure 13a) into three separate 

binary raster maps (Figure 13b):  

• MS-NFI classes 1-20 (built-up features, urban green areas other than forests, infrastructure, quarries 

and peat production areas) as artificial  

• MS-NFI classes 21-22 (meadows and agricultural fields) as agriculture  

• MS-NFI classes 91-112 (water, bare sand and bedrock, open bogs, paludified areas, forests and for-

ested marshes) as natural  

Figure 13: Processing steps for landscape mosaic: Rasterized topographic map (A), reclassified into three general 
landscape components (B), focal habitats (C), landscape mosaic index (D), simplified landscape mosaic extracted 
for a focal habitat: all forests (E) and spruce (F). For landscape pattern type explanations, see figure 15. 
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Second, we extracted total volume5 of pine, spruce, birch and other deciduous trees as raster maps from 

the MS-NFI data. With raster calculator expressions, we evaluated the dominant tree species for each 

pixel, with birch and other deciduous trees treated together. This resulted in four binary raster maps de-

scribing the patterns of the focal habitat, where the focal habitat could be either pine-, spruce-, or decidu-

ous dominated, or all forest types put together (Figure 13c). These focal habitat maps can also be consid-

ered as a data source from which forest ecosystem extent indicators can be complied (Table 23). 

 
Table 23: Forest ecosystem extent indicators following draft SEEA-EA guidelines (UNSD 2020: table 14.1) 

Indicator Measurement unit 

Percentage of EAA covered by specific forest habitat type Hectares, % of opening  

Change of area covered by specific forest habitat types during an accounting period % 

Percentage of area covered by specific forest habitat type that is unchanged (opening stock – 

reduction) 
Hectares; % of opening 

Percentage of area covered by specific forest habitat type which has changed (additions + re-

ductions) 
Hectares; % of opening 

 

Third, we applied a moving window approach with neighborhood size of 7 pixels to obtain the landscape 

mosaic context of each pixel in the EAA. In other words, for every pixel we counted how many pixels of 

artificial, agriculture and natural landscape exists in the neighborhood of 7 x 7 = 49 pixels (or 1.3 ha). The 

pixel count was then converted to proportions, which resulted in three raster maps storing the areal pro-

portion (0 – 100 %) of each class for each pixel.  

Fourth, we used raster calculator to classify each pixel in the EAA into one of seventeen landscape pattern 

types based on pre-defined thresholds (Figure 14) and proportion of artificial, agriculture and natural6 

 
5 The volume of a tree in MS-NFI is defined as the volume of the stem wood above stump until the top of the 
tree. 
6 A word of caution: The term ‘natural’ as used in the modelling framework presented in this study does not refer 
to naturalness as a condition in ecological sense, but simply refers to the landscape context in a strict and 
straightforward division of the landscape into three components, natural, agricultural, and urban. The natural 
here also includes semi-natural landscapes. Naturalness of a forest habitat cannot be determined from MS-NFI 
data alone. The great majority of Finnish forests are managed and forest habitats which could be considered to 
be in natural state are very rarely found outside protected areas (but managed forests are also found inside pro-
tected areas!) 
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calculated in the previous step. The output of this operation is a new raster map called landscape mosaic 

index (Figure 13d) (Wickham & Norton 1994, Riitters et al. 2000, Riitters et al. 2009).  

These seventeen classes were simplified into four classes of interest following Estreguil et al. (2014): 

• Focal habitats in core natural patterns (NN) are always (100 %) adjacent to natural/seminatural hab-

itats or in the interior part of patches, 

• Focal habitats in mainly natural patterns (N) are mainly (80%) bordering natural/semi-natural habi-

tats, 

• Focal habitats in mixed natural patterns (MN = Na + Nu + Nua) are embedded in a predominant 

natural context (Nx), but are significantly fragmented by agricultural and/or artificial land,  

• Focal habitats in some natural patterns (SN = sum of all the other types) are predominantly in hu-

man induced contexts (Ux, Ax, Mix) (i.e. forest patch in agricultural landscape). 

Finally, we intersected the simplified landscape mosaic with each four focal habitats (Figure 13e and 

Figure 13f). A total of six indicators describing the general landscape context can calculated (Table 24). 

The first indicator, proportion of all natural/seminatural habitat in landscape (NP), is a general indicator 

and cannot be calculated for a focal habitat. The other five indicators in this group can be calculated for 

any given focal habitat type and describe its share of the total landscape (FP) as well as in different land-

scape mosaic contexts (NN-P, N-P, MN-P and SN-P). 

 
Table 24: Forest ecosystem condition indicators characterizing the general landscape content 

Indicator Abbreviation Measurement unit 

Proportion of natural/semi-natural habitat in landscape NP %  

Proportion of the focal habitat in landscape FP % 

Proportion of focal habitat in 'core natural' landscape mosaic context NN-P % 

Proportion of focal habitat in 'mainly natural' landscape mosaic context N-P % 

Proportion of focal habitat in 'mixed natural' landscape mosaic context MN-P % 

Proportion of focal habitat in 'some natural' landscape mosaic context SN-P % 

Figure 14: The 17 landscape pattern types derived from the landscape mosaic index (from Estreguil et al. 2011) 
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3.3.1.2 Morphological pattern indicators 

Morphological shapes of forest habitat, such as amount and connectivity of interior areas, geometry of 

habitat edges, and presence of clumps and linear strips of habitat in the landscape all play an important 

ecological role in forest ecosystem condition (Estreguil et al. 2014). 

The mathematical morphological spatial pattern analysis (MSPA) application Guidos Toolbox, developed 

by Soille and Vogt (2009), was used to implement the model. The only input data required is a spatially 

referenced raster maps of the focal habitat in the landscape. We used the same focal habitat maps as 

described earlier, but as an additional processing step, the maps had to follow the modelling software 

requirements. This required combining the focal habitat maps with all forests map and recoding pixel 

values as following (see Figure 15a and Figure 15c): 

• ignored, includes all forests excluding the focal habitat7 

• background, non-forest (everything else) 

• foreground, focal habitat (pine/spruce/deciduous/all forests) 

Guidos Toolbox segments the input raster map and outputs twenty-five classes which are further simpli-

fied into six mutually exclusive spatial pattern classes (see Figure 15b and Figure 15d): a) interior or 

core areas which are beyond a fixed distance to the border (defined by edge width), b) boundaries of 

interior areas either on the outer side (edges) or internal side (perforations), c) connectors which consist 

of focal habitat with no core and connects either to two or more different core habitats or to the same core 

(loops), d) branches which consist of focal habitat with no core and are connected to interior areas from 

only one end, e) physically isolated islets, too small to form an interior, and f) background, which includes 

everything else. 

 

 
7 In the case when focal habitat is all forests, value 0 is not used 
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Figure 15: Processing steps for morphological pattern model: input forest mask for all forests (A), simplified model 
output for all forests (B), input forest mask for spruce (C) and simplified model output for spruce (D) 

Four indicators describing morphological patterns can be calculated for each focal habitat (Table 25). 

These indicators are simple quantifications of the proportions of a focal habitat in morphological classes: 

in the interior (IFP), in islets (IS), and in linear features (LIP) which includes boundaries, connectors and 

branches. A special case is IF*P, which is IFP enlarged with by the NN (natural) part of the boundary 

class (see next chapter). 

 
Table 25: Forest ecosystem indicators characterizing morphological patterns 

Indicator Abbreviation Measurement unit 

Proportion of focal habitat in interior IFP %  

Proportion of focal habitat in interior and in boundaries with natural 

edge interface (IF + SI-BONN) 
IF*P % 

Proportion of focal habitat in islet ISP % 

Proportion of focal habitat in linear features (boundary, connector and 

branch) 
LIP % 
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3.3.1.3 Edge interface indicators 

The third landscape modeling component is simply a combination of the general landscape and morpho-

logical pattern maps. Following the conceptualization of Estreguil et al. (2014), focal habitats in core 

natural (NN) and mainly natural (N) patterns are considered to have ‘soft’ edge interface context classi-

fied as natural, whereas focal habitats in mixed natural (MN) and some natural (SN) have ‘hard’ edge 

interfaces classified as artificial. 

Figure 16 illustrates the processing steps for the edge interface model. For each focal habitat, the land-

scape mosaic model is intersected with the morphological model to discriminate between the interior and 

edge part of habitat patches, and among different edge morphologies (boundary, linear feature and islet). 

Following Estreguil et al. (2014), six similarity indicators (SI) are derived from the edge interface model 

(Table 26). These indicators quantify the proportion of a given focal habitat in boundaries, islets and linear 

features with either natural or artificial edge interfaces.  

 

 
Figure 16: Processing steps for edge interface model: the landscape mosaic model (left column) and the morpho-
logical model (middle column) are intersected to get the edge interface model (right column). Examples shown for 
all forest (A, B, C) and spruce (D, E, F) focal habitats 
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Table 26: Forest ecosystem condition indicators characterizing edge interface. 

Indicator Abbreviation Measurement unit 

Proportion of focal habitat in boundary with natural edge interface SI-BONN %  

Proportion of focal habitat in boundary with artificial edge interface SI-BOOTHER % 

Proportion of focal habitat in islet with natural edge interface SI-ISNN % 

Proportion of focal habitat in islet with artificial edge interface SI-ISOTHER % 

Proportion of focal habitat in linear feature with natural edge interface SI-LINN % 

Proportion of focal habitat in linear feature with artificial edge interface SI-LIOTHER % 

 

3.3.2 Ecosystem indicators from remote sensing data 

 

Our ground reference data consisted of around 1500 field plot with 9 m radius over an area of ca. 5 800 

km² and includes total and species-wise growing stock (m³/ha), mean diameter at breast height (cm) as 

well as mean height for each plot (Table 27). As the remote sensing data, we used aerial false-color images 

with ground resolution of 0.3 m, as well as LiDAR data with average point density of 1.66 pts/m². The 

plots were split to training, validation and test set with 70-15-15 -split. The locations of the field plots are 

presented in Figure 17. 

The most common tree species in our field plots was pine, both in the sense of average species-wise 

volume and average proportion of the species. Pine was the dominant tree species group in around 73% 

of the tree species, whereas spruce and deciduous trees were the dominant species in 16% and 11% of the 

Figure 17: Locations of ground reference plots in central Finland. 
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plots respectively. Overall, the field plots represented a wide variety of forest structures and species group 

differences and were representative for the corresponding geographical area. 

 
Table 27: Summary of forest stand variables in training data 

 Volume 

(m³/ha) 

Height (m) DBH (cm) Pine (m³/ha) Spruce 

(m³/ha) 

Deciduous 

(m³/ha) 

Mean 145.71 14.65 17.89 89.05 34.34 22.33 

Std 86.10 4.14 5.39 71.01 66.26 35.75 

Min 2.70 3.80 5.50 0.00 0.00 0.00 

Max 867.35 28.10 36.20 519.86 424.98 288.48 

 

We used the k-nearest neighbors with genetic algorithm (KNN-GA) (Tuominen et al. 2013) as the refer-

ence method, as similar method is used to produce MS-NFI in Finland, and compared the performance of 

RF, ANN and CNN with it. As the CNN architectures, we used the architecture presented by Ayrey et al 

(2018) for LiDAR data and DenseNet by Huang et al (2016) for aerial images. As combining LiDAR and 

optical data for CNNs proved to be difficult, we used a two-step process for species-wise volume predic-

tion with CNNs. First, we transformed all species-wise volumes into proportions for each field plot, and 

then trained a model to predict those from aerial images. The predicted proportions were then used to get 

the species-wise volumes based on predicted total volume. In order to ensure that predictions for species-

wise proportions sum to 1, we included a normalization layer as a final layer for the DenseNet implemen-

tation, where each of the predicted values was divided by the sum of all predictions for the corresponding 

field plot. 

Even though CNNs are able to process raw image data, the same is not true with LiDAR point clouds, as 

CNN expect the data to have a grid-like topography. Because of this, the LiDAR point clouds were 

voxelized into 45x45x40cm voxels (see Figure 18 for visualization), and the value for each voxel was 

assigned to be 1 if any points were within the voxel and 0 otherwise. We also tested whether using the 

number of returns within each voxel as the values affected the performance, but it had practically no 

effect. For other methods, we extracted both optical and textural features from the false-color images, and 

a set of point cloud metrics, such as proportions of points in various height thresholds, from LiDAR point 

clouds (Tuominen et al. 2020).  
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We used root mean squared error (RMSE), relative RMSE (RMSE-%), bias and relative bias (bias-%) to 

evaluate our models. RMSE-% and bias-% were acquired by dividing RMSEs and biases with the mean 

value of the targets and multiplying them by 100. For neural network models (ANN and CNN), we used 

mean squared error as the loss function to optimize the models.  

3.4 Results and discussion 

3.4.1 Indicators of forest fragmentation 

Indicators of forest fragmentation were calculated for a whole MS-NFI mapsheet, but for the sake of 

demonstration, results for two municipalities with very contrasting characteristics are shown here (Figure 

19). Akaa is a small town of 16 000 inhabitants with two bigger urban centres. Agriculture forms major 

part of the landscape and roughly one-third of the landscape area is forested. Padasjoki, on the other hand, 

has relatively small amount of agriculture and artificial areas in the landscape. Forests are occupying 

nearly half of the landscape which is otherwise dominated by other natural areas, mostly lakes.  

 

Figure 18: Visualization of voxelized field plot. Each voxel represents the points within the corresponding 3D space. 
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Demonstrations of ecosystem condition indicator accounts for these municipalities are shown in Table 28 

and Table 29. The first indicator, NP, verifies the visual interpretations that can be made from Figure 19: 

the proportion of natural and seminatural habitats in Padasjoki (0.681) is twice as much as in Akaa (0.347), 

and has remained practically unchanged between 2009 and 2017. Proportion of forest habitats in the land-

scape (FP) follow the typical order in Finland: spruce-dominated forest type is the most common, fol-

lowed by pine and deciduous species. An important observation is that deciduous forests are more often 

found outside core natural landscape mosaic context than pine and spruce (NN-P, N-P, MN-P, SN-P), 

which indicates a stronger fragmentation pattern. We must stress, however, that the analysis is done purely 

from landscape perspective, and we cannot say what are the causes behind these fragmentation patterns. 

As stated earlier, these indicators describe forest state, not the pressures or processes that cause the frag-

mentation patterns observer here. We can only speculate how much the fragmentation is caused by pres-

sures of anthropogenic origin and how much can be explained by natural ecosystem processes, as decid-

uous trees in boreal forests naturally tend to grow in mixed stands with coniferous trees. 

Ratio of interior versus non-interior habitat is an important measure of fragmentation (Estreguil et al. 

2014). When looking at the morphological patterns in the example, we get further hints of fragmentation 

of deciduous forests. The proportion of forest habitat in interior (IFP) as well as in interior and in bound-

aries with natural edge interface together (IF*P) is considerably smaller for deciduous than for pine and 

spruce forests. This trend is stronger in Akaa than in Padasjoki. This naturally leads to a situation where 

a bigger proportion of focal habitat situates in islets (ISP) and in linear features (LIP). While islets offer 

important habitat provision services, physical isolation and lack of connectivity to other forest patches 

can worsen their condition and makes them vulnerable to disappear due to their shape and size (Estreguil 

et al. 2014). Linear features, on the other hand, also provide critical ecosystem services – especially con-

nectors, which provide ecological corridors critical for species movement and dispersal – but are as well 

endangered by fragmentation and other anthropogenic pressures. 

Fragmentation also relates to the shift in land use at edges: permeability of natural edge interfaces for 

species dispersal is higher than those of artificial edges (Estreguil et al. 2014). As expected, we see evi-

dence of higher level of fragmentation for deciduous forests than the other two forest types: whereas 

proportions of focal habitat in boundaries, islets and linear features with natural edge interface (SI-BONN, 

SI-ISNN, SI-LINN) are more even between the three forest types, the same proportions with artificial edge 

interface (SI-BOOTHER, SI-ISOTHER, SI-LIOTHER) are considerably larger for deciduous than other forest 

types, and more so in Akaa than in Padasjoki. 

Figure 19. Focal habitat and general landscape patterns (2017) of two municipalities used for demonstration: Akaa 
(A) and Padasjoki (B). 
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3.4.1.1 Uncertainties  

Since the forest fragmentation indicators are derived from existing national datasets on forest inventories 

and land use, it is clear that any results derived by analyzing this data will inherit the uncertainties and 

errors present in the source data. Assessing uncertainties and errors becomes even more complex as the 

source data is a time series. Pixel-level prediction errors in the MS-NFI are generally rather high (Tomppo 

et al. 2013) but decrease when the area in question increases. The errors vary by predicted forest variable 

and depend also on the actual value in the field, for example on the volume of growing stock and the site 

fertility class. Several error sources have been identified in Tomppo et al. (2008). However, the densities 

of field plots used in the inventory are high enough to ensure that the resulting sampling errors are low 

for core variables, such as volume of growing stock (Mäkisara et al. 2019). 

Availability of suitable satellite images for MS-NFI has been one of the biggest sources of uncertainty 

(Tomppo et al. 2013). For example, in the 2009 inventory, only two satellite sensors (Landsat-5 and 7) 

with suitable specifications were available for analysis (some coarser resolution satellites were also used 

as alternative). The combination of short vegetation growth period, 16-day repeat cycle and frequent cloud 

cover, typical situation in Nordic summer, further complicated wall-to-wall mapping of forest parameters. 

In fact, the 2009 data still has some number of no-data pixels where no estimations could be made. The 

situation changed considerably in the MS-NFI of 2017, as Landsat-5 was decommissioned and data from 

new satellite sensors with higher radiometric resolution (Landsat-8) and higher spectral as well as spatial 

resolution (Sentinel-2) became available. Not only did the quality of data improve, but also the amount 

of available satellite images, improving the probabilities of collecting data with clear-sky conditions. 

The forest extent and fragmentation indicators presented in this study depend in one MS-NFI forest pa-

rameter, the volume estimates. For the 2009 inventory8, the magnitude of average errors of volume esti-

mates at pixel level in Southern Finland for all species were 86 and 62 m3/ha in mineral and peat soil 

(Tomppo et al. 2008). Errors of volume estimates disaggregated by species group were largest for pine 

(63 and 50 m3/ha in mineral and peat soil) and smallest for other deciduous trees group (22 and 9 m3/ha). 

However, when the MS-NFI volume estimates are aggregated to municipal, regional or national scale, the 

results are more robust as pixel-level errors are smoothed in larger scale.  

Until 2011, the MS-NFI pixel size was 20 m, which was changed to 16 m in 2013. In this study, the 2009 

MS-NFI data was resampled to match the 16 m pixel size and to make the results comparable. Changing 

the spatial resolution can affect raster values at pixel level, but at larger scales this effect is smoothed out.  

The topographic map database has positional accuracy comparable to maps on scale 1:5 000–1:10 000 

and consists of map sheets which are updated in 5–10 year periods, but some elements such as roads and 

buildings are updated yearly (Mäkisara et al. 2019), which can lead to temporal inconsistencies in the 

data. 

 
8 Error estimates are not available for the 2017 MS-NFI. 
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Table 28: Demonstration of ecosystem condition indicator account for Akaa municipality using landscape level characteristics. Indicators are given for the reference condition 
(2009), accounting year 2017, and absolute change in indicator values between the accounting year and reference condition. 

 

 

Edge width (m) Edge width (m) Edge width (m)

Neighborhood Neighborhood Neighborhood

Description Indicator All forests Deciduous Pine Spruce All forests Deciduous Pine Spruce All forests Deciduous Pine Spruce

Proportion of natural/semi-natural habitat in landscape NP

Cover of the focal habitat in landscape (ha) FC 17519 4069 4711 8568 17512 5433 4846 7519 -7 1364 135 -1049

Proportion of the focal habitat in landscape FP 0,310 0,072 0,083 0,152 0,310 0,096 0,086 0,133 0,000 0,024 0,002 -0,019

Proportion of focal habitat in 'core natural' landscape 

mosaic context NN-P 0,565 0,432 0,596 0,610 0,560 0,455 0,642 0,580 -0,005 0,023 0,045 -0,029

Proportion of focal habitat in 'mainly natural' landscape 

mosaic context N-P 0,159 0,154 0,149 0,166 0,165 0,169 0,145 0,174 0,006 0,015 -0,004 0,008

Proportion of focal habitat in 'mixed natural' landscape 

mosaic context MN-P 0,180 0,230 0,165 0,166 0,180 0,213 0,137 0,184 0,000 -0,016 -0,028 0,018

Proportion of focal habitat in 'some natural' landscape 

mosaic context SN-P 0,096 0,184 0,089 0,058 0,096 0,163 0,076 0,062 0,000 -0,022 -0,013 0,004

Proportion of focal habitat in interior IFP 0,572 0,440 0,606 0,619 0,573 0,463 0,655 0,593 0,000 0,023 0,049 -0,027

Proportion of focal habitat in interior and in boundaries 

with natural edge interface (IF + BONN) IF*P 0,710 0,563 0,730 0,760 0,711 0,601 0,776 0,737 0,001 0,037 0,046 -0,023

Proportion of focal habitat in islet ISP 0,047 0,112 0,056 0,032 0,048 0,090 0,038 0,031 0,000 -0,021 -0,018 0,000

Proportion of focal habitat in linear features (boundary, 

connector and branch) LIP 0,380 0,449 0,338 0,349 0,380 0,447 0,307 0,376 0,000 -0,002 -0,031 0,027

Proportion of focal habitat in boundary with natural 

edge interface SI-BONN
0,137 0,124 0,125 0,141 0,138 0,138 0,122 0,145 0,001 0,014 -0,003 0,004

Proportion of focal habitat in boundary with artificial 

edge interface SI-BOOTHER
0,136 0,136 0,107 0,126 0,138 0,140 0,100 0,140 0,002 0,005 -0,007 0,014

Proportion of focal habitat in islet with natural edge 

interface SI-ISNN
0,002 0,002 0,003 0,002 0,002 0,002 0,001 0,002 0,000 0,000 -0,001 0,000

Proportion of focal habitat in islet with artificial edge 

interface SI-ISOTHER
0,046 0,109 0,053 0,029 0,046 0,088 0,036 0,029 0,000 -0,021 -0,017 0,000

Proportion of focal habitat in linear feature with natural 

edge interface SI-LINN
0,012 0,021 0,013 0,013 0,012 0,022 0,010 0,015 0,000 0,001 -0,003 0,002

Proportion of focal habitat in linear feature with artificial 

edge interface SI-LIOTHER
0,094 0,169 0,094 0,070 0,091 0,147 0,076 0,076 -0,003 -0,022 -0,018 0,007

0,347 0,347 0,000

General 

landscape

48

7 x 7

Ecosystem type (i.e. focal habitat)

Accounting area Akaa

Accounting year CHANGE 

Extent (ha) 56491

Reference year 2009 (reference)

56491

48

Accounting area Akaa Accounting area Akaa

Accounting year 2017

Extent (ha) 56491

Ecosystem type (i.e. focal habitat)

Extent (ha)

7 x 7

Ecosystem type (i.e. focal habitat)

48

7 x 7

Morphology

Interface

Ecosystem Condtion Typology: Landscape level charateristics
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Edge width (m) Edge width (m) Edge width (m)

Neighborhood Neighborhood Neighborhood

Description Indicator All forests

Deciduou

s Pine Spruce All forests Deciduous Pine Spruce All forests

Deciduou

s Pine Spruce

Proportion of natural/semi-natural habitat in landscape NP

Cover of the focal habitat in landscape (ha) FC 46597 7984 13508 24897 46749 9919 15010 23005 152 1935 1502 -1892

Proportion of the focal habitat in landscape FP 0,472 0,081 0,137 0,252 0,473 0,100 0,152 0,233 0,002 0,020 0,015 -0,019

Proportion of focal habitat in 'core natural' landscape 

mosaic context NN-P 0,665 0,545 0,683 0,693 0,655 0,544 0,679 0,688 -0,010 0,000 -0,004 -0,006

Proportion of focal habitat in 'mainly natural' landscape 

mosaic context N-P 0,181 0,196 0,176 0,178 0,190 0,205 0,179 0,190 0,009 0,009 0,002 0,012

Proportion of focal habitat in 'mixed natural' landscape 

mosaic context MN-P 0,133 0,200 0,123 0,117 0,135 0,194 0,130 0,112 0,002 -0,006 0,006 -0,005

Proportion of focal habitat in 'some natural' landscape 

mosaic context SN-P 0,022 0,060 0,017 0,012 0,021 0,057 0,013 0,011 -0,001 -0,003 -0,004 -0,001

Proportion of focal habitat in interior IFP 0,627 0,534 0,649 0,645 0,624 0,535 0,624 0,664 -0,003 0,002 -0,025 0,019

Proportion of focal habitat in interior and in boundaries 

with natural edge interface (IF + BONN) IF*P 0,817 0,704 0,832 0,837 0,819 0,716 0,815 0,852 0,001 0,012 -0,017 0,015

Proportion of focal habitat in islet ISP 0,007 0,022 0,007 0,007 0,007 0,017 0,008 0,005 0,000 -0,005 0,001 -0,001

Proportion of focal habitat in linear features (boundary, 

connector and branch) LIP 0,366 0,445 0,343 0,348 0,369 0,447 0,367 0,331 0,003 0,003 0,024 -0,017

Proportion of focal habitat in boundary with natural 

edge interface SI-BONN
0,190 0,170 0,182 0,192 0,194 0,180 0,190 0,188 0,004 0,011 0,008 -0,004

Proportion of focal habitat in boundary with artificial 

edge interface SI-BOOTHER
0,086 0,106 0,076 0,074 0,087 0,108 0,069 0,075 0,001 0,002 -0,007 0,001

Proportion of focal habitat in islet with natural edge 

interface SI-ISNN
0,002 0,004 0,002 0,004 0,002 0,002 0,004 0,002 0,000 -0,002 0,002 -0,001

Proportion of focal habitat in islet with artificial edge 

interface SI-ISOTHER
0,005 0,018 0,005 0,003 0,005 0,015 0,005 0,003 0,000 -0,003 -0,001 0,000

Proportion of focal habitat in linear feature with natural 

edge interface SI-LINN
0,026 0,033 0,026 0,031 0,024 0,032 0,039 0,023 -0,002 -0,002 0,013 -0,007

Proportion of focal habitat in linear feature with artificial 

edge interface SI-LIOTHER
0,064 0,136 0,059 0,051 0,064 0,128 0,069 0,045 0,000 -0,008 0,010 -0,007

-0,001

General 

landscape 

Ecosystem Condtion Typology: Landscape level charateristics Accounting area Padasjoki Accounting area

Extent (ha) 98818 Extent (ha)

0,681 0,682

Accounting area Padasjoki

Reference year 2009 Accounting year 2017 Accounting year CHANGE 

Padasjoki

Ecosystem type (i.e. focal habitat) Ecosystem type (i.e. focal habitat) Ecosystem type (i.e. focal habitat)

98818 Extent (ha) 1843200

48 48 48

Morphology

Interface

7 x 7 7 x 7 7 x 7

Table 29: Demonstration of ecosystem condition indicator account for Padasjoki municipality using landscape level characteristics. Indicators are given for the reference 
condition (2009), accounting year 2017, and absolute change in indicator values between the accounting year and reference condition 
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3.4.2 Predicting forest stand variables from remote sensing data 

For non-species related forest variables, our CNN was able to outperform other methods by using only 

voxelized LiDAR data, whereas other methods utilized features from both LiDAR point clouds and aerial 

imagery. The most significant improvement was with total volume, where the RMSE-% improved by 

around 3 percentage points compared to KNN-GA and ANN, and 5 percentage points compared to RF 

(Table 30). For both mean height and mean DBH the differences were not as significant, as the difference 

between best and worst results was less than one percentage point for DBH and around 1.5 percentage 

points for mean height. Interestingly, for mean height all other methods were able to achieve slightly 

better results than benchmark method KNN-GA.  

 
Table 30: Results for overall forest variables 

 KNN-GA RF ANN CNN 

RMSE     

Mean height (m) 1.18 1.06 1.09 0.96 

Total volume (m³/ha) 36.21 39.54 36.59 31.97 

Mean DBH (cm) 2.24 2.28 2.25 2.12 

RMSE-%     

Mean height (m) 8.04% 7.19% 7.45% 6.55% 

Total volume (m³/ha) 23.82% 26.01% 24.07% 21.03% 

Mean DBH (cm) 12.42% 12.64% 12.49% 11.73% 

BIAS      

Mean height (m) -0.12 0.02 -0.08 0.14 

Total volume (m³/ha) 3.21 3.71 -1.16 -3.70 

Mean DBH (cm) -0.18 0.09 -0.06 -0.06 

BIAS-%     

Mean height (m) -0.78% 0.16% -0.57% 0.97% 

Total volume (m³/ha) 2.16% 2.50% -0.76% -2.43% 

Mean DBH (cm) -1.00% 0.50% -0.35% -0.34% 

 

Overall, results for species-wise volumes were significantly worse compared to the non-species related 

attributes (Table 31). Whereas CNNs were the most accurate models before, they were by far the worst 

performing method for each tree species. It is worth noting, however, that CNN was the only method 

where we specifically forced the species-wise predictions to add up to the predicted total volume, and 

there are slight errors with the other models. For instance, the RMSE-% between predicted total volume 

and sum of species-wise volumes is around 17%. As most of our field plots were pine-dominated, results 

for pine were the most accurate, while results for the other two species groups were significantly worse.   
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Table 31: Results for species-wise volumes 

 KNN-GA RF ANN CNN 

RMSE     

Pine (m³/ha) 37.08 42.60 41.61 43.87 

Spruce (m³/ha) 23.67 24.61 22.26 51.18 

Deciduous (m³/ha) 18.18 20.65 19.07 26.28 

RMSE-%     

Pine (m³/ha) 39.20% 45.03% 43.99% 46.38% 

Spruce (m³/ha) 114.08% 122.20% 124.11% 140.86% 

Deciduous (m³/ha) 86.25% 97.93% 90.44% 124.64% 

BIAS      

Pine (m³/ha) 1.49 5.11 -5.84 5.15 

Spruce (m³/ha) 0.05 -1.16 0.44 2.85 

Deciduous (m³/ha) 0.25 -2.68 1.42 -4.29 

BIAS-%     

Pine (m³/ha) -1.60% 5.71% -6.17% 5.76% 

Spruce (m³/ha) 0.14% -3.09% 1.20% 8.50% 

Deciduous (m³/ha) 1.21% -11.30% 6.74% -16.90% 

 

Overall, utilizing CNNs for predicting these forest variables showed promising results, as they were able 

to achieve better results for half of the observed stand attributes, even with only low-density LiDAR data. 

However, we were not able to sufficiently combine aerial imagery with LiDAR point clouds, which re-

sulted poor performance in species-wise volume predictions. Nevertheless, state-of-the-art deep learning 

methods showed improvement for acquiring structural indicators (e.g. total volume, mean height), 

whereas other tested methods enable us to predict tree species group distributions in some degree.  

Currently, the National Land Survey of Finland (NLS) is updating the nation-wide LiDAR data with 

higher resolution data (5p/m²), and it is expected that these data are sufficient for predicting also the 

horizontal and vertical structure of the forest canopy, one of the key ecosystem indicators, for which the 

current point density is not sufficient enough. Also, these data should improve also results for species-

wise attributes. 

3.5 Conclusion and recommendations 

This research provided an overview of proposed ecosystem condition indicators for forest ecosystems. 

We also demonstrated how structural state and landscape indicators can be predicted and calculated with 

novel remote sensing and machine learning methods, as well as more ‘conventional’ spatial analysis of 

existing national spatial datasets. 

As a rule of thumb, a set of around six to ten indicators for a given ecosystem type generally should 

provide sufficient information to assess the overall condition of an ecosystem asset, provided they are 
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well selected (UNSD 2020). Ideally, one to two indicators from every SEEA ECT class should be enough, 

but very challenging to achieve considering the heterogeneity of ecosystem types. Especially the abiotic 

physical and chemical state indicators are difficult because of lack of spatial data. 

The final selection of indicators for Finland is out of scope of this study. The selection should consider 

not only forests but also other ecosystem types (terrestrial and marine), it should be based on existing 

ecological knowledge and monitoring systems, with ecologists, remote sensing experts and statisticians 

directly involved in the selection process. 

For forest ecosystems, a consensus should be reached what are the forest ecosystem types that should be 

included in the Finnish ecosystem type classification and ecosystem accounting. In this study, we took a 

rather straightforward division by dominant tree species group. The ecosystem services provided by co-

niferous- and deciduous-dominated forest types are similar but there are also differences which can justify 

the choices made in this study. Another way of defining forest types would be by tree species composition, 

since it plays a significant role in maintaining biodiversity: mixed-species forests can host greater species 

richness and provide more ecosystem services compared to monocultures of conifers (Brockerhoff et al. 

2017). Still more approaches include separation between managed forests and forests in natural state, by 

fertility class, or by forest age groups or development stages. 

We demonstrated the use of a robust and scalable modelling framework for calculating landscape indica-

tors for forest fragmentation using existing spatial data. The framework is based on SEBI and previous 

research done at the JRC and EEA, but for the first time applied in the draft SEEA-EA framework in 

Finland. By using existing datasets, costly acquisition and processing of new data can be avoided, and 

time series of MS-NFI and LULC data is available for accounting purposes since 2009. Scalability comes 

from the fact that the landscape indicators can be applied for any EAA from municipal to country level. 

The landscape indicators were implemented with free open source software using models and scripts 

whenever possible, which enhances repeatability and transparency of the methodology. However, user 

interaction is still required as the software are based on graphical user interface. The modeling framework 

could be further automized with R or Python code, which could be the next step forward. More further 

work exist in definition of reference level values for the indicators (upper and lower levels), and develop-

ment of connectivity and other indicators (not only landscape) from these datasets. 

In this work, we demonstrated that state-of-the-art deep learning methods are able to achieve similar or 

better results than the method currently in operational use, even with most likely unoptimal voxelization 

process. As Ayrey et al (2018) had data with considerably higher point density (9-15 pts/m² compared to 

less than 2 pts/m² used here), the dimensions of the voxel grid are most likely not optimal for our data 

resulting in mostly empty voxel grids. Nevertheless, CNNs were able to find such features from these 

data that they were able to outperform other methods for non-species related forest attributes. As the 

amount of nation-wide LiDAR data increases, the potential for utilizing modern deep learning methods 

also in operational use becomes a viable alternative. However, LiDAR data alone is not well-suited for 

estimating tree-species related variables, so either aerial images or satellite images are needed for those 

attributes. Especially satellite imagery has large potential, as their temporal resolution and spatial cover-

age are by far the best among the data sources. As shown in Brandt et al (2020), satellite data and deep 

learning can be used to map even individual trees, though the performance of this method in dense-canopy 

boreal forests is still an open question. Nevertheless, deep learning has the potential to revolutionalize 

ecosystem observation and enable more accurate ecosystem indicators. 
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3.6 Lexicon 

CNN Convolutional neural networks (machine learning method) 

DBH Diameter at breast height 

DL Deep learning (a subgroup of machine learning) 

EAA Ecosystem accounting area 

ECT Ecosystem condition typology 

EO Earth observation 

GBM Gradient boosting trees (machine learning method) 

GBR Gaussian process regression (machine learning method) 

KNN-GA k-nearest neighbors with genetic algorithm (machine learning method) 

LAI Leaf area index 

LUKE National Resources Institute Finland (Luonnonvarakeskus) 

LULC Land use / land cover 

ML Machine learning 

MS-NFI Multi-Source National Forest Inventory 

MSPA Morphological Spatial Pattern Analysis 

RF Random forest (machine learning method) 

SEBI Streamlining European Biodiversity Indicators  

SEEA-EA System of Environmental Economic Accounting – Ecosystem Accounting (draft version) 

SEEA-EEA System of Environmental Economic Accounting – Experimental Ecosystem Accounting 

SVM Support vector machine (machine learning method) 

SYKE Finnish Environment Institute (Suomen ympäristökeskus) 
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In this section we focus on the valuation of wooded land. We provide ecosystem monetary asset accounts 

for forest capital by using different approaches, namely stumpage value, property price value and net 

present value methods. Some of the approaches include only the value of timber resources while some 

include also the bareland value. SEEA Central Framework provides guidelines for valuing forest as an 

asset (UN et al.2014). Central Framework covers forest accounts both in physical and monetary terms, 

for which we focus on the latter one.    

4.1 Scope and definitions for valuation of forests with monetary asset 

account 

 

Monetary asset account for timber resources consists in measuring the value of the opening and closing 

stock of timber resources and the changes in the value of the stock over an accounting period. Monetary 

asset account records the additions and reductions that appear also in physical account. SEEA guidelines 

find it important to distinguish between the changes due to the changes in volumes and changes in prices. 

To provide both effects separately, monetary asset account includes the entry called revaluation that rec-

ords the impact of price changes during an accounting period. 

Monetary asset account covers only those timber resources that have economic value, according to SEEA 

Central Framework (UN et al.2014). On the other hand, physical accounts cover all timber resources as 

they may provide other benefits. Timber resources outside monetary accounts include the forests that are 

in areas in which logging operations are restricted or prohibited, that are in areas that are inaccessible or 

remote and hence logging is not economically viable or do not belong to a commercially useful species. 

In addition, SEEA guidelines emphasize the distinction between cultivated and natural forests. The growth 

in cultivated timber resources is considered as a process under the direct control, responsibility and man-

agement of institutional units. Consequently, the growth is recorded as occurring within the production 

boundary. The growth of natural timber resources, on the other hand, is not considered to take place within 

the production boundary and is recorded as entering the production boundary only at the time the tree is 

removed from the forest or other land area. In the case of Finland, most of the timber resources are com-

mercially utilized and under forest management.  

Resource rent on timber resources can be derived as the gross operating surplus from the harvest of timber 

resources (after taking into account specific taxes and subsidies) less the value of the user costs of pro-

duced assets used in the harvesting process. Resource rent can be estimated by using estimates of the 

stumpage price, which is the amount paid per cubic meter of timber by the harvester to the owner of the 

timber resources.  The harvesting costs should include felling costs as well as costs of thinning, other 

management costs and rent on land. 

 

 



2019-FI-ENVECO – Novel methods for the accounting of forest ecosystems and circular materials - Methodological report 

Page 69 / 73 
 

4.2 The value of forests and timber resources in Finland by using three 

different approaches 

In here we compare three different method to produce monetary asset account for forestry land in Finland 

for period 2010-2014.   

a) Stumpage value approach 

b) Property price approach  

c) Net present value approach 

4.2.1 Stumpage value approach  

In Finland forest and forestry statistics are maintained by Natural Resources Institute Finland (Luke). The 

statistics present investment returns on wood production in non-industrial private forests (NPF), which 

includes calculation for the asset value. The forest asset value is called stumpage value.  It is calculated 

by multiplying the assortment-specific volumes of forests by their standing sales prices (Luke 2021). This 

corresponds the situation in which forests are harvested instantaneously.  Stumpage value approach do 

not include the value of bareland or expectation values for standing trees. 

 
Table 32: Monetary asset account for timber resources in forestry land available for wood production with stumpage 
value approach 

Period 2010-2014 

(billion €)  

Opening stock of timber resources 60.75 

Natural growth 14.07 

Removals 9.12 

Revaluation -0.65 

Closing stock of timber resources 65.05 

 

In the Table 32 the monetary asset account with values of opening and closing stock is presented based 

on the stumpage value approach. The accounting area applied is forest land available for wood production 

as in other approaches. We have used detailed data provided by Luke on the regional stumpage prices and 

volumes by wood assortments to calculate the value of timber resources. This data that is used in Luke to 

calculate forestry investment returns as described above, covers only the non-industrial private forests 

available for wood production. Thus, we have to convert the obtained forest value for all forest land 

available for wood production9. Natural growth describes the value of growth and transition of assortment-

specific volumes. Removals are the value of stumpage earnings during the period. The revaluation effect 

describes the change in the price of the resource multiplied by the quantity at the end of the period.  

 

4.2.2 Property price approach  

The real estate purchase price register is maintained by the National Land Survey of Finland. In taxation 

in Finland the purchase price data of forest properties is used for valuation of forest properties which 

value has not been specified otherwise. Taxation administration publishes each year a table of these 

 
9 The value for timber resources for non-industrial private forests available for wood production has been con-
verted to value for all forest land available for wood production by multiplying it by 1.43 that is the relation be-
tween the areas of all forest land and private forest land available for wood production in 2004-2008, which is 
the most recent period this information has been reported in Finnish forest statistics. 
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values, which are based on statistics for the previous three years (Verohallitus 2010, Verohallitus 2015). 

These purchase prices include both the value of the land and the value of the stand. In addition, other 

forest ecosystem services affect the price of the forest. 
 

Table 33: Monetary asset account for forests and timber resources in forestry land available for wood production 
with property price approach 

Period 2010-2014 

(billion €)  

Opening stock of timber resources 37.23 

Natural growth 9.12 

Removals 9.12 

Revaluation 9.99 

Closing stock of timber resources 47.22 

 

In the Table 33 the values of opening and closing stock based on the property price value approach are 

presented. The value of volume growth of forest is equal to removals because the revaluation includes 

both the stumpage and bareland value changes of forests. Removals are the value of stumpage earnings 

during the period. The revaluation effect describes the change in the price of the forest land multiplied by 

the quantity (hectares) at the end of the period. In here, the forestry land available for wood production is 

assumed constant and equal the land area in the net present value approach and in the FinFEP-model.  

 

4.2.3 Net present value approach  

In the forest economy the value of forest land in timber production is calculated with so called Faustmann 

formula. Faustmann formula does not take into account other ecosystem services than timber production. 

Typically, other ecosystem services such as berry picking, mushroom picking, and recreational use benefit 

from forest aging. Thus, taking into account forest ecosystem services lengthens forest rotations. In the 

case of Finland, this is reflected in the fact that the preferences of forest owners must be taken into account 

in order to explain the harvest volumes and the existence of old-growth forests (Lintunen et al. 2015).  In 

the SEEA Central Framework this challenge has been identified: “The primary difficulty in applying these 

NPV approaches lies in the extent to which information is available on the age structure of the trees and 

how these trees will mature into the future.”. However, methods such as remote sensing are available to 

produce the age structure, but methods for determining mature age and its relationship to forest owners’ 

preferences requires development. 

In here, we produce monetary asset account for forest timber production based on the estimated future 

harvests. The future harvest volumes are results of Finnish forest and energy sector model (FinFEP; Lin-

tunen et al 2015). FinFEP model captures the development of age classes in Finnish forests. We use the 

version of FinFEP-model which is calibrated to year 2010 and run simulation for 165 years. Discount rate 

of 2.7 % is used that is consistent with the one used in harvesting decisions in the model.  Because the 

simulated time is finite the estimated value is underestimation also in the case of wood production. The 

preferences of forest owners are assumed to be constant. So, the harvest rules are unchanged. However, 

estimates of demand in the forest and energy sectors affect production and investment in these sectors. 

Demand for end products in the forest sector is assumed to grow by 1% annually, with the exception of 

paper products that  is assumed to decrease 1% per year. In addition, given the aging of forest resources, 

estimating future harvest volumes requires extensive modeling. Timber prices are determined in the 

model. They vary over accounting period, balancing the supply and demand of timber. Thus, our approach 

is market-based. 
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Table 34: Monetary asset account for forests and timber resources in forestry land available for wood production 
with NPV approach 

Period 2010-2014 

(billion €)  

Opening stock of timber resources 90.29 

Natural growth 9.16 

Removals 9.97 

Revaluation  

Closing stock of timber resources 89.48 

Here, forest owners' preferences and other ecosystem services affect wood production and its discounted 

value. However, we are unable to estimate the value of those other ecosystem services at this time. In the 

Table 34 the value of opening and closing stocks are discounted net profits of harvests during the simu-

lation. Removals are discounted net profits of harvest during the period 2010-2014. Because opening and 

closing stocks are based on same simulation the natural growth balance the values of the accounts i.e. 

natural growth equals removals plus the difference between closing and opening stock.  

4.3 Value of carbon related forest ecosystem services  

 

Carbon related ecosystem services are the most straightforward to quantify in addition to timber produc-

tion as their volume is directly related to timber and there exist suitable market prices for valuation. SEEA 

revision paper on defining and valuing the carbon related ecosystem services (Edens et al. 2019) recom-

mends that carbon sequestration should be considered as the (only) carbon related ecosystem service. On 

the other hand, the amount stored (as a result of sequestration or pre-existing) is a stock variable that may 

be included in the condition account and/or carbon account.  

  

4.3.1 Definitions for carbon sequestration 

Edens et al (2019) argue that the definition and measurement of carbon sequestration should be aligned 

with / be complementary to IPCC guidelines as much as possible. Thus, they recommend that carbon 

sequestration should be measured as net ecosystem carbon balance (NECB) that accounts also carbon 

losses. This approach is also suggested in Lintunen et al (2018).  

Net ecosystem carbon balance is defined as  

NECB (net ecosystem carbon balance) = Net Biome production (NBP) = NEP – Carbon loss from Dis-

turbance/Land-clearing/Harvest 

in which   

NEP (net ecosystem production) = NPP – soil respiration = GPP – ecosystem respiration  

  

There are two approaches to analyze the supply of carbon sequestration by ecosystems. In stock-differ-

ence method sequestration is derived by comparing changes in stocks of carbon over time, for instance 

on the basis of forest inventories and soil carbon measurements. This approach may be called an indirect 

method, as sequestration can be derived as a residual. Gains-Loss method estimates carbon sequestration 

directly (called in IPPC guidelines) and involves the quantification of all key inflows and outflows of 

carbon per ecosystem unit. 
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4.3.2 Valuation of carbon sequestration 

Edens et al (2019) identify four options to value carbon, namely social cost of carbon (SCC), abatement 

cost approach, observed market prices and consumer preferences, and discuss the benefits and deficien-

cies of these approaches. They recommend the use of ETS prices where they are available, and in countries 

with an ETS they recommend using these ETS prices also as “best available estimates” for those sectors 

which are not covered by the respective ETS. A major advantage of ETS market prices is that they provide 

a market-based exchange value that is aligned with the SNA (and SEEA) exchange value notion. In addi-

tion, they are readily available. Beyond this, many transactions concerning carbon are already recorded 

in the national accounts. However, they suggest that ETS based carbon valuations should be comple-

mented with an additional valuation based at a (global) SCC estimate. 

 

4.3.3 The net present value of carbon sequestration in Finland 

Value of carbon sequestration in Finland is presented as net present value with calculation period of 165 

years. The amounts of carbon sequestration are based on the scenario we utilize for NPV calculation for 

timber production described above. The carbon sequestration is calculated as changes in the carbon stock 

on the above and below ground biomass of trees. According to Edens et al (2019), we value carbon by 

using the price of European Union Allowances (EUA) in the European Union Emissions Trading Scheme 

(EU ETS) and estimate for social cost of carbon. We have chosen carbon prices of 15, 30, 50 and 100 €/t 

CO2 to illustrate the sensitivity of the value of carbon sequestration to price of carbon. The price of 15 €/t 

CO2 is the average price of EUA for year 2010 that is the first year of the accounting period while the 

price of 30 €/t CO2 is close to the current price of EUA. The price of 50 €/t CO2 is the carbon price in the 

EU in 2040 according to the reference scenario published by European Parliament (2016). The upper limit 

for estimates of social cost of carbon is reflected in the carbon price of 100 €/t CO2 (Lintunen et al 2018). 

Carbon price is assumed to be constant over time. NPV for carbon sequestration is presented in Table 35 

for opening stock in 2010 and closing stock in 2014. 

 
Table 35: Net present value of carbon sequestration with different prices of carbon, billion euros 

Price of EUA, €/t CO2 Value of opening stock Value of closing stock 

15 18.1 17.5 

30 35.8 35.0 

50 59.6 58.4 

100 119.2 116.8 

Net present value for carbon sequestration varies between 18–119 billion euros depending on the price of 

carbon used. The amount of carbon sequestration is largest in the beginning of the NPV calculation period 

of 165 years and is considerably reduced over time.  

4.4 Conclusions 

 

We have provided the value of forests for Finland by using three different approaches, namely stumpage 

value, property price value and NPV approaches. In net present value approach, the forest-energy sector 

model FinFEP was utilized in order to produce the future harvest levels and capture the development of 

age classes in forests. The value of forests based on timber production was 37–90 billion euros, depending 

on the approach used. The higher value in the case of NPV approach is partly explained by the fact that 

forests are rapidly growing in the future. We also calculated the value of carbon sequestration with NPV 

approach. The value was estimated to be 18–120 billion euros for carbon prices of 15–100 €/t CO2 based 
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on carbon price in EU ETS and social cost of carbon. With most likely carbon prices, 30 and 50 €/t CO2 

the value of sequestration was 36 or 60 billion euros that is notable compared to value of timber produc-

tion.  

The forest asset values consist on the value of bareland, net present value of standing trees and net present 

value of all ecosystem services. As noted above, they cannot be properly valued by one method. Accord-

ing to forest economics, the NPV method is scientifically correct, but its implementation requires the use 

of a model and the making of predictions. In any case, there are currently no methods for valuing multiple 

simultaneous ecosystem services. Property prices includes also values related other ecosystem services 

than wood production.  In principle, it offers the possibility to value different ecosystem services, but the 

amount of data may limit its use. 

 

4.5 References 

Edens B., Elsasser P., Ivanov E. (2019). Discussion paper 6: Defining and valuing carbon related services in the SEEA EEA. 

Paper submitted to the Expert Meeting on Advancing the Measurement of Ecosystem Services for Ecosystem Account-

ing, New York, 22-24 January 2019 and subsequently revised. Version of 15 March 2019. Available at: 

https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystem-services-ecosystem-accounting 

European Parliament (2016). Draft Report of the Committee on the Environment, Public Health and Food Safety. Compromise 

Amendments 1-17 on the Proposal for a Directive of the European Parliament and of the Council amending Directive 

2003/87/EC to Enhance Cost-effective Emission Reductions and Low-carbon Investments. 2015/0148(COD), 14 Decem-

ber 2016 

Lintunen, J., Laturi, J., & Uusivuori, J. 2015. Finnish Forest and Energy Policy model (FinFEP): a model description. Natural 

resources and bioeconomy studies 59/2015. http://urn.fi/URN:ISBN:978-952-326-119-8 

Lintunen, J., Pohjola, J., Laturi, J. (2018). Valuation of forest related ecosystem services. In Vihervaara et al. (2018): Towards 

ecosystem accounting based on innovations and insights on natural capital knowledge. Eurostat Grants 2017 final report. 

https://circabc.europa.eu/sd/a/2403d31e-e57f-44f3-85b6-892d89986d7a/FI-2017-Ecosystem%20accounts.pdf 

Luke. 2021. Forestry as an investment. Natural Resources Institute Finland (Luke). https://stat.luke.fi/en/quality-description-

forestry-investment_en 

United Nations, European Union, FAO, IMF, OECD, World Bank (2014). System of Environmental- Economic accounting 

2012: Central framework. UN, New York. https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf 

Verohallitus (2010). Varojen arvostaminen perintö- ja lahjaverotuksessa. https://www.vero.fi/contentas-

sets/9ec0fac42cd046f5897f7ecd69faf85f/varojen_arvostaminen_perint%C3%B6-_ja_lahjaverotuksessa_p%C3%A4ivi-

tys_1_9_2010.pdf 

Verohallitus (2015). Varojen arvostaminen perintö- ja lahjaverotuksessa. https://www.vero.fi/contentas-

sets/47eb2a04d85042c6926000d4d1c79957/varojen-arvostaminen-perinto--ja-lahjaverotuksessa-vuosi-2016.pdf 

https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystem-services-ecosystem-accounting
http://urn.fi/URN:ISBN:978-952-326-119-8
https://circabc.europa.eu/sd/a/2403d31e-e57f-44f3-85b6-892d89986d7a/FI-2017-Ecosystem%20accounts.pdf
https://stat.luke.fi/en/quality-description-forestry-investment_en
https://stat.luke.fi/en/quality-description-forestry-investment_en
https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf
https://www.vero.fi/contentassets/9ec0fac42cd046f5897f7ecd69faf85f/varojen_arvostaminen_perint%C3%B6-_ja_lahjaverotuksessa_p%C3%A4ivitys_1_9_2010.pdf
https://www.vero.fi/contentassets/9ec0fac42cd046f5897f7ecd69faf85f/varojen_arvostaminen_perint%C3%B6-_ja_lahjaverotuksessa_p%C3%A4ivitys_1_9_2010.pdf
https://www.vero.fi/contentassets/9ec0fac42cd046f5897f7ecd69faf85f/varojen_arvostaminen_perint%C3%B6-_ja_lahjaverotuksessa_p%C3%A4ivitys_1_9_2010.pdf
https://www.vero.fi/contentassets/47eb2a04d85042c6926000d4d1c79957/varojen-arvostaminen-perinto--ja-lahjaverotuksessa-vuosi-2016.pdf
https://www.vero.fi/contentassets/47eb2a04d85042c6926000d4d1c79957/varojen-arvostaminen-perinto--ja-lahjaverotuksessa-vuosi-2016.pdf

